• Title/Summary/Keyword: Power factor improvement

Search Result 383, Processing Time 0.045 seconds

Electric energy saving system with high speed response to load variation using power-factor correction (부하변동에 속응하는 역률개선형 전력절감시스템)

  • Kim, Tae-Soo;Kang, Hyung-Sik;Joo, Kyung-Don;Lyu, Seung-Heon;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2388-2390
    • /
    • 2002
  • Small type electric energy saving system is proposed in this paper. The system improves power factor fastly according to load variation of each customer. Phases of voltage and current are detected as 1[ms] unit. Phase coincident algorithm is applied for power factor improvement. Capacitance is controlled for optimal power factor correction. Series reactor is controlled for harmonics reduction. Non-contact device is used for fast response and long life. Test result shows the effect of this system. Power factor of 40[W] electric fan is improved from 95[%] to 100[%]. In the case of electric light, power factor is improved from 82[%] to 100[%]. Response time for load variation is less than 1[ms].

  • PDF

Performance Improvement of Power Control System for Driving MGT

  • Lee Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.744-749
    • /
    • 2005
  • This paper describes the performance improvement of power control system of magnetron (MGT) for microwave oven. The MGT is used extensively in household microwave oven and industrial microwave heating devices, and is operated by 3.0[kV] $\∼$5.0[kV] dc high voltage. The proposed power supply is consisted of a bridge rectifier, step-up converter(SUC) and its controller, half bridge inverter(HBI) and its controller, and full wave double voltage rectifier(DVR). In the proposed system, a good power factor can be obtained by the SUC' switching method that the inductor current waveforms follows that of the rectified voltage, and a line input power can be controlled to a range of 17.5[$\%$] by duty ratio (DR) adjustment of the HBI.

Characteristic Analysis of Voltage Stability Improvement and Power Factor Correction by STATCOM (STATCOM의 전압안정도개선 및 역률 보상 특성분석)

  • Park, Ji-Yong;Park, Duk-Hee;Han, Byung-Moon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.12
    • /
    • pp.1507-1513
    • /
    • 1999
  • This paper describes simulation and experimental results to analyze the dynamic characteristics of STATCOM, which is connected to the ac system for compensation the power factor and improving the voltage stability. The simulation and experimental results confirm that the scaled model for STATCOM can properly compesate the power factor of the load and regulate the bus voltage at the common connection point.

  • PDF

Velocity Control of Induction Motor with high power factor (유도전동기의 고역률 속도 제어)

  • La, Dae-Hee;Lee, Kwang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.94-96
    • /
    • 1993
  • At an operating point of the induction motor, there are many sets of stator frequency and voltage. This paper presents an algorithm to determine the stator frequency and voltage which maximizes the power factor without any informations of motor parameters. Improvement of efficiency us also expected due to high-power-factor operation.

  • PDF

A Controller Design for a Stability Improvement of an On-Board Battery Charger

  • Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.951-958
    • /
    • 2013
  • This paper proposes the controller design for a stability improvement of an on-board battery charger. The system is comprised of a power factor correction (PFC) circuit and phase shift full-bridge DC-DC converter. The PFC circuit performs the control of the DC-link voltage and the input power factor. The DC-DC converter regulates the voltage and the current in the battery using the DC-link voltage. This paper proposes the design method of PI controller for the PFC circuit using a small signal model. The analysis and design of a type-three controller for the DC-DC converter is also presented. A simulation and experiment has been performed on the on-board battery charger and their results are presented to verify the validity of the proposed system.

A Study on the Reasonable Design Standard and Countermeasures of the Demand Factor (변전설비 용량기준의 합리화 방안 및 대책에 관한 연구)

  • Yoo, H.J.;Ha, B.N.;Nam, K.D.;Pak, S.M.;Cho, N.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.902-904
    • /
    • 1996
  • In this paper, we proposed the reasonable design standard and countermeasures of Demand Factor for large office buildings, that was made by the statistical way considering actual conditions, such as investicated electric equipment capacity, electric power consumption, etc. So as to save electric equipment investment, the decrease of power loss, the improvement of facilities utilization and the decrease of electric rates, we can be contributed by the application of the design standard. The result of saving effect is showed to confirm the practical use of the proposed Demand Factor, and also, it is believed that this proposed Demand Factor will be useful in electric equipment operation and planning.

  • PDF

A Study on Harmonic Reduction of Single-phase UPS with Variable Passive Harmonic Filters (가변형 수동 고조파 필터에 의한 단상 무정전전원장치의 고조파 저감에 관한 연구)

  • Kim, Sung-Sam;Hwang, Seon-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.495-501
    • /
    • 2019
  • This paper proposes a variable passive harmonic filter for reduction and improvement of harmonics and power factor of single-phase uninterruptible power supply(UPS) with full bridge rectifier. Recently, UPSs have excellent harmonic and power factor operation characteristics by applying 2-level or more levels of power conversion methods. On the other hand, the single-phase UPS of the full bridge rectifier seriously causes the third, fifth, and seventh harmonics, and the power factor reduction on the grid side. Therefore, we present a variable passive harmonic filter for eliminating (2n+1) order harmonics and improving the power factor generated by the full bridge rectifier operation. In order to evaluate the performance of the proposed variable harmonic filter, the its validity is verified by various simulations and experiments.

A Study on the PFC(Power Factor Correction) boost converter applied Flying Capacitor Snubber. (Flying Capacitor Snubber를 적용한 PFC(Power Factor Correction) Boost 컨버터에 관한 연구)

  • Kim B.C.;Lee H.S.;Seo J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.77-80
    • /
    • 2003
  • Switching Mode Power Supply(SMPS) is widely used in many industrial fields. Power factor improvement and harmonic reduction technique are very important in SMPS. In this paper, we propose the circuit applied Flying Capacitor Snubber for improving power factor of boost converter on fast switching state. Snubber circuit consists of a inductor, two diodes and a capacitor. The losses of switching are reduced by inserting a snubber inductor in the series path of the boost switch and the rectifier diode to control the di/dt rate of the rectifier during it's turn-off. Prior to actual experiment, the circuit analysis Is implemented by PSPICE simulation.

  • PDF

Database Construction to compute Representative Model of Load Power Factor in Large Scale Power System (대규모 전력계통의 부하역률 대표모델 산정을 위한 데이터베이스 구축)

  • Lee, Jung-Hee;Kim, Kwang-Wook;Cho, Jong-Man;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.209-211
    • /
    • 2002
  • This paper computes the regional, seasonal and hourly representative model of load power factor considering load characteristics of all 154/22.9 kV substations. An accurately computed representative model of load power factor is studied to present a precision improvement of power system analysis and the security of the system. The method to compute representative model of load utilizes the method of applicable moving average based on the method of flow average. The EMS data are used as the source to assess the load power factor.

  • PDF

A Study on the Characteristics for Power Capacitor under the Voltage Unbalance Operation (불평형 전압 운전시의 역률보상용 커패시터 특성 연구)

  • Kim, Il-Jung;Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.36-40
    • /
    • 2008
  • Most of the low-voltage feeder are designed with approximately balanced and connected at the three phase four wire systems. However, Most of the power distribution systems' load which is composed of single or three phase are unbalanced by generating load unbalance. Unbalanced current will draw a highly unbalanced voltage. The power factor of an induction motor at rated operation is between 25 and 90%, depending on the size and speed of the motor. However, many induction motors operate below the nominal rating, resulting in poor power factor. This condition needs power factor improvement. Addition of power capacitor at the motor terminal may draw to stress due to voltage unbalance. This paper presents operation characteristics on steady states of a three-phase induction motor under unbalanced voltages with power capacitor. The existence of voltage unbalance have an effect on stress of power capacitor.