• Title/Summary/Keyword: Power device packaging

Search Result 63, Processing Time 0.023 seconds

Accelerated Degradation Stress of High Power Phosphor Converted LED Package (형광체 변환 고출력 백색 LED 패키지의 가속 열화 스트레스)

  • Chan, Sung-Il;Jang, Joong-Soon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.4
    • /
    • pp.19-26
    • /
    • 2010
  • We found that saturated water vapor pressure is the most dominant stress factor for the degradation phenomenon in the package for high-power phosphor-converted white light emitting diode (high power LED). Also, we proved that saturated water vapor pressure is effective acceleration stress of LED package degradation from an acceleration life test. Test conditions were $121^{\circ}C$, 100% R.H., and max. 168 h storage with and without 350 mA. The accelerating tests in both conditions cause optical power loss, reduction of spectrum intensity, device leakage current, and thermal resistance in the package. Also, dark brown color and pore induced by hygro-mechanical stress partially contribute to the degradation of LED package. From these results, we have known that the saturated water vapor pressure stress is adequate as the acceleration stress for shortening life test time of LED packages.

Power Generation Properties and Bending Characteristics of a Flexible Thermoelectric Module Fabricated using PDMS Filling Method (PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.119-126
    • /
    • 2019
  • A flexible thermoelectric module, which consisted of 18 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs, were processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its power generation properties and bending characteristics were measured. With putting the flexible module on the wrist, an open circuit voltage of 2.23 mV and a maximum output power of 1.69 ㎼ were generated during staying still. On the other hand, an open circuit voltage of 3.32 mV and a maximum output power of 3.41 ㎼ were obtained with walking motion. The resistance variation of the module was kept below 1% even after applying 30,000 bending cycles with a bending curvature radius of 25 mm.

Numerical Thermal Analysis of IGBT Module Package for Electronic Locomotive Power-Control Unit (전동차 추진제어용 IGBT 모듈 패키지의 방열 수치해석)

  • Suh, Il Woong;Lee, Young-ho;Kim, Young-hoon;Choa, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.1011-1019
    • /
    • 2015
  • Insulated-gate bipolar transistors (IGBTs) are the predominantly used power semiconductors for high-current applications, and are used in trains, airplanes, electrical, and hybrid vehicles. IGBT power modules generate a considerable amount of heat from the dissipation of electric power. This heat generation causes several reliability problems and deteriorates the performances of the IGBT devices. Therefore, thermal management is critical for IGBT modules. In particular, realizing a proper thermal design for which the device temperature does not exceed a specified limit has been a key factor in developing IGBT modules. In this study, we investigate the thermal behavior of the 1200 A, 3.3 kV IGBT module package using finite-element numerical simulation. In order to minimize the temperature of IGBT devices, we analyze the effects of various packaging materials and different thickness values on the thermal characteristics of IGBT modules, and we also perform a design-of-experiment (DOE) optimization

Carbon Dioxide Sensor Substrate for Surface-mounted Packaging

  • Han, Hyeuk-Jin;Kim, Tae Wan;Park, Kwang-Min;Park, Chong-Ook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.159-164
    • /
    • 2015
  • Solid state electrochemical and chemo-resistive gas sensors have been used widely but can operate only under high temperature. For reducing the power consumption and optimizing the structure of the substrate of these sensors, we conducted device and circuit simulations using the COMSOL Multiphysics simulator. For assessing the effective types of substrate and heat isolation, we conducted three-dimensional thermal simulations in two separate parts; (a) by changing the shape of the contacting holes and (b) punching additional holes on the substrate. Thus, it was possible to achieve high temperature in the sensor end of the substrate while maintaining low power consumption, and temperature in the circuit.

The Study on the Embedded Active Device for Ka-Band using the Component Embedding Process (부품 내장 공정을 이용한 5G용 내장형 능동소자에 관한 연구)

  • Jung, Jae-Woong;Park, Se-Hoon;Ryu, Jong-In
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, by embedding a bare-die chip-type drive amplifier into the PCB composed of ABF and FR-4, it implements an embedded active device that can be applied in 28 GHz band modules. The ABF has a dielectric constant of 3.2 and a dielectric loss of 0.016. The FR-4 where the drive amplifier is embedded has a dielectric constant of 3.5 and a dielectric loss of 0.02. The proposed embedded module is processed into two structures, and S-parameter properties are confirmed with measurements. The two process structures are an embedding structure of face-up and an embedding structure of face-down. The fabricated module is measured on a designed test board using Taconic's TLY-5A(dielectric constant : 2.17, dielectric loss : 0.0002). The PCB which embedded into the face-down expected better gain performance due to shorter interconnection-line from the RF pad of the Bear-die chip to the pattern of formed layer. But it is verified that the ground at the bottom of the bear-die chip is grounded Through via, resulting in an oscillation. On the other hand, the face-up structure has a stable gain characteristic of more than 10 dB from 25 GHz to 30 GHz, with a gain of 12.32 dB at the center frequency of 28 GHz. The output characteristics of module embedded into the face-up structure are measured using signal generator and spectrum analyzer. When the input power (Pin) of the signal generator was applied from -10 dBm to 20 dBm, the gain compression point (P1dB) of the embedded module was 20.38 dB. Ultimately, the bare-die chip used in this paper was verified through measurement that the oscillation is improved according to the grounding methods when embedding in a PCB. Thus, the module embedded into the face-up structure will be able to be properly used for communication modules in millimeter wave bands.

Stretchable Characteristics and Power Generation Properties of a Stretchable Thermoelectric Module Filled with PDMS (PDMS로 충진된 신축열전모듈의 신축특성과 발전특성)

  • Han, Kee Sun;Oh, Tae Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.149-156
    • /
    • 2019
  • A stretchable thermoelectric module consisting of 5 pairs of Bi2Te3-based hot-pressed p-n thermoelectric legs was processed by filling the module inside with polydimethylsiloxane (PDMS) and removing the top and bottom substrates. Its stretchable characteristics and power generation properties were measured. The integrity of the module was kept well even after 10 strain cycles ranging from 0 to 0.1. With increasing the tensile strain to 0.2, the module circuitry became open because of joint failure between Cu electrodes and thermoelectric legs. The stretchable thermoelectric module exhibited an open circuit voltage of 4.6 mV with a temperature difference of 2.2K across both ends of thermoelectric legs, and changes in its open circuit voltage were below 5% for tensile strains of 0~0.1. Being elongated for a strain of 0.1, it exhibited the maximum output power of 18.5 ㎼ with the temperature difference of 2.2K across its both ends.

Evaluation of GaN Transistors Having Two Different Gate-Lengths for Class-S PA Design

  • Park, Jun-Chul;Yoo, Chan-Sei;Kim, Dongsu;Lee, Woo-Sung;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.3
    • /
    • pp.284-292
    • /
    • 2014
  • This paper presents a characteristic evaluation of commercial gallium nitride (GaN) transistors having two different gate-lengths of $0.4-{\mu}m$ and $0.25-{\mu}m$ in the design of a class-S power amplifier (PA). Class-S PA is operated by a random pulse-width input signal from band-pass delta-sigma modulation and has to deal with harmonics that consider quantization noise. Although a transistor having a short gate-length has an advantage of efficient operation at higher frequency for harmonics of the pulse signal, several problems can arise, such as the cost and export license of a $0.25-{\mu}m$ transistor. The possibility of using a $0.4-{\mu}m$ transistor on a class-S PA at 955 MHz is evaluated by comparing the frequency characteristics of GaN transistors having two different gate-lengths and extracting the intrinsic parameters as a shape of the simplified switch-based model. In addition, the effectiveness of the switch model is evaluated by currentmode class-D (CMCD) simulation. Finally, device characteristics are compared in terms of current-mode class-S PA. The analyses of the CMCD PA reveal that although the efficiency of $0.4-{\mu}m$ transistor decreases more as the operating frequency increases from 955 MHz to 3,500 MHz due to the efficiency limitation at the higher frequency region, it shows similar power and efficiency of 41.6 dBm and 49%, respectively, at 955 MHz when compared to the $0.25-{\mu}m$ transistor.

Physical and Electrical Characteristics of SrBi$_2$Ta$_2$O$_9$ thin Films Etched with Inductively Coupled Plasma Reactive Ion Etching System (유도결합형 플라즈마 반응성 이온식각 장치를 이용한 SrBi$_2$Ta$_2$O$_9$ 박막의 물리적, 전기적 특성)

  • 권영석;심선일;김익수;김성일;김용태;김병호;최인훈
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.11-16
    • /
    • 2002
  • In this study, the dry etching characteristics of $SrBi_2Ta_2O_9$ (SBT) thin films were investigated by using ICP-RIE (inductively coupled plasma-reactive ion etching). The etching damage and degradation were analyzed with XPS (X-ray photoelectron spectroscopy) and C-V (Capacitance-Voltage) measurement. The etching rate increased with increasing the ICP power and the capacitively coupled plasma (CCP) power. The etch rate of 900$\AA$/min was obtained with 700 W of ICP power and 200 W of CCP power. The main problem of dry etching is the degradation of the ferroelectric material. The damage-free etching characteristics were obtained with the $Ar/C1_2/CHF_3$ gas mixture of 20/14/2 when the ICP power and CCP power were biased at 700 W and 200 W, respectively. The experimental results show that the dry etching process with ICP-RIE is applicable to the fabrication of the single transistor type ferroelectric memory device.

  • PDF

DIMM-in-a-PACKAGE Memory Device Technology for Mobile Applications

  • Crisp, R.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.45-50
    • /
    • 2012
  • A family of multi-die DRAM packages was developed that incorporate the full functionality of an SODIMM into a single package. Using a common ball assignment analogous to the edge connector of an SODIMM, a broad range of memory types and assembly structures are supported in this new package. In particular DDR3U, LPDDR3 and DDR4RS are all supported. The center-bonded DRAM use face-down wirebond assembly, while the peripherybonded LPDDR3 use the face-up configuration. Flip chip assembly as well as TSV stacked memory is also supported in this new technology. For the center-bonded devices (DDR3, DDR4 and LPDDR3 ${\times}16$ die) and for the face up wirebonded ${\times}32$ LPDDR3 devices, a simple manufacturing flow is used: all die are placed on the strip in a single machine insertion and are sourced from a single wafer. Wirebonding is also a single insertion operation: all die on a strip are wirebonded at the same time. Because the locations of the power signals is unchanged for these different types of memories, a single consolidated set of test hardware can be used for testing and burn-in for all three memory types.

Research Trends in Thermal Interface Materials for Flexible and Stretchable Electronic Device (유연신축성 전자 디바이스를 위한 열계면 소재 연구동향)

  • Young-Joo Park;Geon-Joo Jeong;Kwang-Seok Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.7-15
    • /
    • 2024
  • In the trend of the multi-functionalization, miniaturization, and increased power output trends of flexible and stretchable electronic devices, the development of materials or structures with superior heat transfer characteristics has become a pressing issue. Traditional thermal interface materials (TIM) fail to meet the heat dissipation requirements of flexible and stretchable electronic devices, which must endure rapid bending, twisting, and stretching. To address this challenge, there is a demand for the development of TIM that simultaneously possesses high thermal conductivity and stretchability. This paper examines the research trends of liquid metal, carbon, and ceramic-based stretchable thermal interface materials and explores effective strategies for enhancing their thermal and mechanical properties.