DOI QR코드

DOI QR Code

Evaluation of GaN Transistors Having Two Different Gate-Lengths for Class-S PA Design

  • Park, Jun-Chul (Electrical and Electronic Engineering Department, Yonsei University) ;
  • Yoo, Chan-Sei (Electronic Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Kim, Dongsu (Packaging Research Center, Korea Electronics Technology Institute) ;
  • Lee, Woo-Sung (Electronic Materials & Device Research Center, Korea Electronics Technology Institute) ;
  • Yook, Jong-Gwan (Electrical and Electronic Engineering Department, Yonsei University)
  • Received : 2014.06.09
  • Accepted : 2014.09.04
  • Published : 2014.09.30

Abstract

This paper presents a characteristic evaluation of commercial gallium nitride (GaN) transistors having two different gate-lengths of $0.4-{\mu}m$ and $0.25-{\mu}m$ in the design of a class-S power amplifier (PA). Class-S PA is operated by a random pulse-width input signal from band-pass delta-sigma modulation and has to deal with harmonics that consider quantization noise. Although a transistor having a short gate-length has an advantage of efficient operation at higher frequency for harmonics of the pulse signal, several problems can arise, such as the cost and export license of a $0.25-{\mu}m$ transistor. The possibility of using a $0.4-{\mu}m$ transistor on a class-S PA at 955 MHz is evaluated by comparing the frequency characteristics of GaN transistors having two different gate-lengths and extracting the intrinsic parameters as a shape of the simplified switch-based model. In addition, the effectiveness of the switch model is evaluated by currentmode class-D (CMCD) simulation. Finally, device characteristics are compared in terms of current-mode class-S PA. The analyses of the CMCD PA reveal that although the efficiency of $0.4-{\mu}m$ transistor decreases more as the operating frequency increases from 955 MHz to 3,500 MHz due to the efficiency limitation at the higher frequency region, it shows similar power and efficiency of 41.6 dBm and 49%, respectively, at 955 MHz when compared to the $0.25-{\mu}m$ transistor.

Keywords

References

  1. M. Iwamoto, A. Williams, P. F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, "An extended doherty amplifier with high efficiency over a wide power range," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2472-2479, Dec. 2001. https://doi.org/10.1109/22.971638
  2. B. Kim, J. Kim, I. Kim, and J. Cha, "The Doherty power amplifier," IEEE Microwave Magazine, vol. 7, no. 5, pp. 42-50, Oct. 2006. https://doi.org/10.1109/MW-M.2006.247914
  3. J. C. Park, D. Kim, C. S. Yoo, W. S. Lee, J. G. Yook, and C. K. Hahn, "Efficiency enhancement of the Doherty amplifier for 3.5 GHz WiMAX application using class-F circuitry," Microwave and Optical Technology Letters, vol. 52, no. 3, pp. 570-573, Mar. 2010. https://doi.org/10.1002/mop.24977
  4. J. C. Park, D. Kim, C. S. Yoo, W. S. Lee, J. G. Yook, S. H. Chun, J. H. Kim, and C. K. Hahn, "GaN HEMT based high power and high efficiency Doherty amplifiers with digital pre-distortion correction for WiBro applications," Journal of the Korea Electromagnetic Engineering Society, vol. 11, no. 1, pp. 16-26, Mar. 2011. https://doi.org/10.5515/JKIEES.2011.11.1.016
  5. J. J. Yan, C. D. Presti, D. F. Kimball, Y. P. Hong, C. Hsia, P. M. Asbeck, and J. Schellenberg, "Efficiency enhancement of mm-wave power amplifiers using envelope tracking," IEEE Microwave and Wireless Components Letters, vol. 21, no. 3, pp. 157-159, Mar. 2011. https://doi.org/10.1109/LMWC.2010.2102747
  6. F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, "Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1244-1255, Apr. 2005. https://doi.org/10.1109/TMTT.2005.845716
  7. F. Wang, D. F. Kimball, J. D. Popp, A. H. Yang, D. Y. Lie, P. M. Asbeck, and L. E. Larson, "An improved power-added efficiency 19-dBm hybrid envelope elimination and restoration power amplifier for 802.11g WLAN applications," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4086-4099, Dec. 2006. https://doi.org/10.1109/TMTT.2006.885575
  8. S. S. Myoung, I. K. Lee, J. G. Yook, K. Lim, and J. Laskar, "Mismatch detection and compensation method for the LINC system using a closed-form expression," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3050-3057, Dec. 2008. https://doi.org/10.1109/TMTT.2008.2006805
  9. A. Jayaraman, P. F. Chen, G. Hanington, L. Larson, and P. Asbeck, "Linear high-efficiency microwave power amplifiers using bandpass delta-sigma modulators," IEEE Microwave Guides Wave Letter, vol. 8, no. 3, pp. 121-123, Mar. 1998. https://doi.org/10.1109/75.661135
  10. M. Iwamoto, A. Jayaraman, G. Hannington, P. F. Chen, A. Bellora, W. Thornton, L. E. Larson, and P. M. Asbeck, "Bandpass delta-sigma class-S amplifier," Electronics Letters, vol. 36, no. 12, pp. 1010-1012, Jun. 2000. https://doi.org/10.1049/el:20000794
  11. F. Schwierz and O. Ambacher, "Recent advances in GaN HEMT development," in Proceedings of the 11th IEEE International Symposium on Electron Devices for Microwave and Optoelectronic Applications, Orlando, FL, 2003, pp. 204-209.
  12. T. Ohki, T. Kikkawa, Y. Inoue, M. Kanamura, N. Okamoto, K. Makiyama, K. Imanishi, H. Shigematsu, K. Joshin, and N. Hara, "Reliability of GaN HEMTs: current status and future technology," in Proceedings of the IEEE International Reliability Physics Symposium, Montreal, Canada, 2009, pp. 61-70.
  13. J. H. Kim, G. D. Jo, J. H. Oh, Y. H. Kim, K. C. Lee, and J. H. Jung, "Modeling and design methodology of high efficiency class-F and class-$F^{-1}$ power amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 1, pp. 153-165, Jan. 2011. https://doi.org/10.1109/TMTT.2010.2090167
  14. D. Kimball, P. Draxler, J. Jeong, C. Hsia, S. Lanfranco, W. Nagy, K. Linthicum, L. Larson, and P. Asbeck, "50% PAE WCDMA base-station amplifier implemented with GaN HFETs," in Proceedings of the Compound Semiconductor Integrated Circuit Symposium, Palm Springs, CA, 2005, pp. 89-92.
  15. P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, "A methodology for realizing high efficiency class-J in a linear and broadband PA," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3196-3204, Dec. 2009. https://doi.org/10.1109/TMTT.2009.2033295
  16. Y. S. Lee, M. W. Lee, and Y. H. Jeong, "High-efficiency class-F GaN HEMT amplifier with simple parasitic-compensation circuit," IEEE Microwave and Wireless Components Letters, vol. 18, no. 1, pp. 55-57, Jan. 2008. https://doi.org/10.1109/LMWC.2007.912023
  17. M. W. Lee, Y. S. Lee, and Y. H. Jeong, "A high-efficiency GaN HEMT hybrid class-E power amplifier for 3.5 GHz applications," in Proceedings of the 38th European Microwave Conference, Amsterdam, 2008, pp. 436-439.
  18. R. Negra, T. D. Chu, M. Helaoui, S. Boumaiza, S. Hegazi, suitable for highly-efficient RF power amplifier design," in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, Honolulu, HI, 2007, pp. 795-798.
  19. I. Angelov, K. Andersson, D. Schreours, D. Xiao, N. Rorsman, V. Desmaris, M. Sudow, and H. Zirath, "Large-signal modeling and comparison of AlGaN/GaN HEMTs and SiC MESFETs," in Proceedings of the Asia-Pacific Microwave Conference, Yokohama, Japan, 2006, pp. 279-282.
  20. N. Chevaux and M. M. Souza, "Class-D power amplifiers using LDMOS and GaN power devices: a comparative analysis," in Proceedings of the 15th IEEE Mediterranean Electrotechnical Conference, Valletta, 2010, pp. 691-694.
  21. G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, "A new method for determining the FET small-signal equivalent circuit," IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 7, pp. 1151-1159, Jul. 1988. https://doi.org/10.1109/22.3650
  22. J. C. Park, C. S. Yoo, W. Kang, D. Kim, J. G. Yook, and W. S. Lee, "GaN HEMT based high efficiency push-pull inverse class-F power amplifier using chip-on-board technique," in Proceedings of the Asia-Pacific Microwave Conference, Melbourne, 2011, pp. 522-525.
  23. J. C. Park, C. S. Yoo, W. Kang, D. Kim, J. G. Yook, and W. S. Lee, "GaN HEMT based high-efficiency current-mode class-D amplifier using chip-on-board technique," Microwave and Optical Technology Letters, vol. 54, no. 2, pp. 358-362, Feb. 2012. https://doi.org/10.1002/mop.26536
  24. J. C. Park, J. G. Yook, B. H. Park, N. Jeon, K. S. Seo, D. Kim, W. S. Lee, and C. S. Yoo, "Hybrid current-mode class-S power amplifier with GaN Schottky diode using chip-on-board technique for 955 MHz LTE signal," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 12, pp. 4168-4178, Dec. 2013. https://doi.org/10.1109/TMTT.2013.2288084

Cited by

  1. An X-band RLC matched power amplifier using quasi-MMIC technology vol.57, pp.12, 2015, https://doi.org/10.1002/mop.29449