• Title/Summary/Keyword: Power capacitor

Search Result 1,922, Processing Time 0.03 seconds

A Study on the Electrical Characteristics of Battery Capacitor Applied to Photovoltaic Power System (태양광 시스템에 적용한 배터리 커패시터의 전기적 특성에 관한 연구)

  • Mang, Ju-Cheul;Yoon, Jung-Rag
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1740-1744
    • /
    • 2017
  • This paper describes the preparation and characteristics of a battery capacitor and module for solar power system. A cylindrical 30,000F battery capacitor ($60{\times}138mm$) was assembled by using the $LTO(Li_4Ti_5O_{12})$ electrode as an anode and $NMC(LiNiMnCoO_2)-LCO(LiCoO_2)$ as a cathode. The battery capacitor has reduced energy density and power density under high CC(constant current) and CP(constant power) conditions. Battery capacitor module (16V, 11Ah) was fabricated using an asymmetric hybrid capacitor with a capacitance of 30,000F. In order to determine the characteristics of the battery capacitor Module for solar power system, battery capacitor cells were connected in series with active balancing circuit. As a result of measuring the 100w LED lamp, it was discharged at the voltage of 15V~10V, and the compensation time at discharge was measured to be about 4979s. Experimental results show that it can be applied to applications related to solar power system by applying battery capacitor module.

On-chip Decoupling Capacitor for Power Integrity (전력 무결성을 위한 온 칩 디커플링 커패시터)

  • Cho, Seungbum;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.3
    • /
    • pp.1-6
    • /
    • 2017
  • As the performance and density of IC devices increase, especially the clock frequency increases, power grid network integrity problems become more challenging. To resolve these power integrity problems, the use of passive devices such as resistor, inductor, and capacitor is very important. To manage the power integrity with little noise or ripple, decoupling capacitors are essential in electronic packaging. The decoupling capacitors are classified into voltage regulator capacitor, board capacitor, package capacitor, and on-chip capacitor. For next generation packaging technologies such as 3D packaging or wafer level packaging on-chip MIM decoupling capacitor is the key element for power distribution and delivery management. This paper reviews the use and necessity of on-chip decoupling capacitor.

Analysis and Design of a Three-port Flyback Inverter using an Active Power Decoupling Method to Minimize Input Capacitance

  • Kim, Jun-Gu;Kim, Kyu-Dong;Noh, Yong-Su;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.558-568
    • /
    • 2013
  • In this paper, a new decoupling technique for a flyback inverter using an active power decoupling circuit with auxiliary winding and a novel switching pattern is proposed. The conventional passive power decoupling method is applied to control Maximum Power Point Tracking (MPPT) efficiently by attenuating double frequency power pulsation on the photovoltaic (PV) side. In this case, decoupling capacitor for a flyback inverter is essentially required large electrolytic capacitor of milli-farads. However using the electrolytic capacitor have problems of bulky size and short life-span. Because this electrolytic capacitor is strongly concerned with the life-span of an AC module system, an active power decoupling circuit to minimize input capacitance is needed. In the proposed topology, auxiliary winding defined as a Ripple port will partially cover difference between a PV power and an AC Power. Since input capacitor and auxiliary capacitor is reduced by Ripple port, it can be replaced by a film capacitor. To perform the operation of charging/discharging decoupling capacitor $C_x$, a novel switching sequence is also proposed. The proposed topology is verified by design analysis, simulation and experimental results.

Compact Power-on Reset Circuit Using a Switched Capacitor

  • Seong, Kwang-Su
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.625-631
    • /
    • 2014
  • We propose a compact power-on reset circuit consisting of a switched capacitor, a capacitor, and a Schmitt trigger inverter. A switched capacitor working with a clock signal charges the capacitor. Thus, the voltage across the capacitor is increased toward the supply voltage. The circuit provides a reset pulse until the voltage across the capacitor reaches the high threshold voltage of the Schmitt trigger inverter. The proposed circuit is simple, compact, has no static power consumption, and works for a wide range of power-on rising times. Furthermore, the clock signal is available while the reset pulse is activated. The proposed circuit works for up to 6 s of power-on rising time, and occupies a $60{\times}30{\mu}m^2$ active area.

Study of Back-Up Electric Power Source as a Role for Instant Power Industry Safety by Super Capacitor (순간 정전시 산업안전용 보조전원 역할의 Super Capacitor에 관한 연구)

  • 김상길;김종철;허진우;김경민;이용욱;강안수
    • Proceedings of the Safety Management and Science Conference
    • /
    • 1999.11a
    • /
    • pp.345-354
    • /
    • 1999
  • A new type of capacitor named "Super Capacitor" has been developed, in which the properties of electric double layer formed at the interface of activated carbon electrode- liquid organic electrolyte is applied. This capacitor is small In size, light in weight, wide In temperature range(-25~$70^{\circ}C$), large in charge-discharge capability and good in voltage preservation. And this super capacitor is applied as a power back-up for electricity failure in volatile memory devices etc., a power source for a short time and a power source for operating actuators. At present the development of high power back-up types of the capacitor system and improvement of their characteristics are being actively conducted in order to find wider applications.lications.

  • PDF

Characteristic Analysis of Power Compensation Condenser Considering Voltage Harmonics (전압 고조파를 고려한 역률보상용 콘덴서의 특성 분석)

  • Kim, Jong-Gyeum;Lee, Dong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.141-145
    • /
    • 2010
  • Most of the industrial loads includes the non-linear load as well as the linear load because there are many kinds of power conversion equipments at the input stage of the load in distribution network. The non-linear load causes the distortion of voltage waveform at PCC because the non-linear load generates the harmonic current. As a result, various voltage harmonics are existed at PCC depending on the current harmonics from the non-linear load. And, a series reactor is generally connected to the power capacitor in series to attenuate the distortion of voltage waveform and to reduce an inrush current of power capacitor. Also, harmonic current of power capacitor is highly dependent on the series reactor because it is operated with the power capacitor as a passive filter against nonlinear loads. Then, these capacitors might be damaged by the excessive voltage and current harmonic components. In this paper, we presented how to select the capacitor and series reactor to meet the requirement of the voltage distortion at PCC and analyzed the voltage, current and capacity rating of the power capacitor by the computer simulation to ensure the safe operation of power capacitor when the voltage harmonics at PCC are existed. Also, the analysis data were compared with the experimental measurements for the verification.

A Study on the Characteristics for Power Capacitor under the Voltage Unbalance Operation (불평형 전압 운전시의 역률보상용 커패시터 특성 연구)

  • Kim, Il-Jung;Kim, Jong-Gyeum
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.1
    • /
    • pp.36-40
    • /
    • 2008
  • Most of the low-voltage feeder are designed with approximately balanced and connected at the three phase four wire systems. However, Most of the power distribution systems' load which is composed of single or three phase are unbalanced by generating load unbalance. Unbalanced current will draw a highly unbalanced voltage. The power factor of an induction motor at rated operation is between 25 and 90%, depending on the size and speed of the motor. However, many induction motors operate below the nominal rating, resulting in poor power factor. This condition needs power factor improvement. Addition of power capacitor at the motor terminal may draw to stress due to voltage unbalance. This paper presents operation characteristics on steady states of a three-phase induction motor under unbalanced voltages with power capacitor. The existence of voltage unbalance have an effect on stress of power capacitor.

Characteristic Analysis of Power Capacitor by the Capacity of Series Reactor (직렬리액터 용량에 따른 역률보상용 콘덴서의 특성 분석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Dong-Ju;Lee, Eun-Woong;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.605_606
    • /
    • 2009
  • Generally, series reactor is connected to the power capacitor in series to attenuate the distortion of voltage waveform and to reduce an inrush current of power capacitor. Also, harmonic current of power capacitor is highly dependent on the series reactor because it is operated with the power capacitor as a passive filter against nonlinear loads. In this paper, harmonic current of power capacitor from nonlinear loads is analyzed by the computer simulation and is experimentally verified.

  • PDF

The Design and Reliability Evaluation of Metallized Film Capacitor for Power Electronic Applications (전력전자용 금속증착 필름 커패시터 설계 및 신뢰성 평가)

  • Yoon, Jung-Rag;Kim, Young-Kwang;Lee, Serk-Won;Lee, Heun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.381-386
    • /
    • 2011
  • This paper presents the design and reliability evaluation of metallized film capacitor for power e lectronics application. The rated voltage of development capacitor is DC 3300[V], the capacitance is 5 ${\mu}F$ and the ripple current capability is 130 $A_{rms}$. Film metallization and patterns are an important design factor that has been development enhance the electric and reliability properties of film capacitor for power electronics. In term of capacitor construction and metallized pattern is one of the parameters that can be modified to further improve the rating in the terms of maximum ripple current and lifetime. This capacitor can be used as snubber capacitor application such as power train invertor system.

Comparative Analysis of Pulse Width Modulation Methods for Improving the Lifetime of DC-link Capacitors of NPC Inverters (NPC 인버터의 DC-link 커패시터 수명 향상을 위한 전압 변조 방법 비교 평가)

  • Choi, Jae-Heon;Choi, Ui-Min
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.291-296
    • /
    • 2022
  • Capacitor is one of the reliability-critical components in power converters. The lifetime of the capacitor decreases as the operating temperature increases, and power losses caused by capacitor current are the main cause of the capacitor temperature increase. Therefore, various studies are being conducted to improve the lifetime of the capacitor by reducing the current of DC-link capacitors. In this study, pulse width modulation methods proposed for improving the lifetime of DC-link capacitors of the three-level NPC inverter are comparatively analyzed. The lifetime evaluation of the DC-link capacitor under different modulation methods is performed at component level first and then system level by considering all capacitors by applying Monte Carlo simulation. Furthermore, their effects on the efficiency and THD of the output current are also considered.