• Title/Summary/Keyword: Power and phase detecting

Search Result 99, Processing Time 0.019 seconds

Near-Range Object Detection System Based on Code Correlation (코드 상관을 이용한 근거리 물체 탐지 장치)

  • Yoo, Ho-Sang;Gimm, Youn-Myoung;Jung, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.4 s.119
    • /
    • pp.455-463
    • /
    • 2007
  • In this paper, it is proposed how to implement the object detection system which is able to apply to vehicular applications, unmanned facilities, automatic door and others with microwave. As the technology which detects an object with microwave is becoming more popular, it seems impossible to avoid mutual interference and jamming caused by limited frequency bandwidth. The system in this paper detects an object by correlating the code of TX and RX signals with the pseudo-random code having best quality in interference and jamming environment. In order to generate simulant doppler signal for detecting the distance of an fixed object where there is no doppler effect, the phase of TX signal is shifted continually. Also, the saturation of receiver was removed and the error of distance measurement was decreased by controlling the power of TX signal for getting constant RX signal. The proposed system detects a object which ranges from 0.5 m to 2.0 m and informs vocally whether there is the object within 1.0 m or not.

Numerical simulation of localization of a sub-assembly with failed fuel pins in the prototype fast breeder reactor

  • Abhitab Bachchan;Puspendu Hazra;Nimala Sundaram;Subhadip Kirtan;Nakul Chaudhary;A. Riyas;K. Devan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3648-3658
    • /
    • 2023
  • The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.

An 2.4 GHz Bio-Radar System for Non-Contact Measurement of Heart and Respiration (호흡 및 심박수 측정을 위한 비 접촉 방식의 2.4 GHz 바이오 레이더 시스템)

  • Lee, Yong-Jin;Jang, Byung-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.191-199
    • /
    • 2008
  • In this paper, we present a performance analysis and design and implementation results of a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals. In order to design a 2.4 GHz bio-radar system qualitatively, we investigate the electromagnetic properties of human tissues and calculate the target SNR of demodulation output with respect to distance. The target SNR is defined by the 90 % success ratio for detecting heartbeat signal. With this target SNR value, the performance and link budget of the bio-radar system is simulated using MATLAB. Using this link budget results, the direct conversion receiver is designed and Implemented in 4 layer printed circuit board(PCB). With output power of 0 dBm and 5 Hz bandwidth, 80 % success ratio of 50 cm is measured. Measurement results show a good agreement with simulation results.

Experimental Verification of Multipactor Sensitivity for S-band Diplexer (S 대역 Diplexer에 대한 Multipactor 민감도 시험)

  • Choi, Seung-Woon;Kim, Day-Young;Kwon, Ki-Ho;Lee, Yun-Ki
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.83-91
    • /
    • 2007
  • An experimental verification of multipactor(MP) discharge for S-band diplexer as a sample DUT for space application by an in-house MP test facility is proposed. The designed diplexer having two BPFs for Rx and Tx is applied to a design of five pole inter-digital cavity type band pass filter with chebyshev response, it has 2.7 % bandwidth centered at 2.232 and 2.055 GHz for Rx, Tx, respectively. To avoid the MP discharge, the accurate design and analysis methods based on 3D EM field analysis are considered. The proposed in-house MP test facility consists of a phase detecting system using a doubly balanced mixer as a simple, low cost and real time MP test method compared with results of previously well-known MP detection systems as cross reference methods. The calculated MP threshold RF input power is 43.13 dBm. The measured one is 43 dBm and 44 dBm for CW, pulsed mode test, respectively.

  • PDF

Design of 24-GHz 1Tx 2Rx FMCW Transceiver (24 GHz 1Tx 2Rx FMCW 송수신기 설계)

  • Kim, Tae-Hyun;Kwon, Oh-Yun;Kim, Jun-Seong;Park, Jae-Hyun;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.10
    • /
    • pp.758-765
    • /
    • 2018
  • This paper presents a 24-GHz frequency-modulated continuous wave(FMCW) radar transceiver with two Rx and one Tx channels in 65-nm complementary metal-oxide-semiconductor(CMOS) process and implemented it on a radar system using the developed transceiver chip. The transceiver chip includes a $14{\times}$ frequency multiplier, low-noise amplifier, down-conversion mixer, and power amplifier(PA). The transmitter achieves >10 dBm output power from 23.8 to 24.36 GHz and the phase noise is -97.3 GHz/Hz at a 1-MHz offset. The receiver achieves 25.2 dB conversion gain and output $P_{1dB}$ of -31.7 dBm. The transceiver consumes 295 mW of power and occupies an area of $1.63{\times}1.6mm^2$. The radar system is fabricated on a low-loss Duroid printed circuit board(PCB) stacked on the low-cost FR4 PCBs. The chip and antenna are placed on the Duroid PCB with interconnects and bias, gain blocks and FMCW signal-generating circuitry are mounted on the FR4 PCB. The transmit antenna is a $4{\times}4$ patch array with 14.76 dBi gain and receiving antennas are two $4{\times}2$ patch antennas with a gain of 11.77 dBi. The operation of the radar is evaluated and confirmed by detecting the range and azimuthal angle of the corner reflectors.

A 3-GSymbol/s/lane MIPI C-PHY Transceiver with Channel Mismatch Correction Circuit (채널 부정합 보정 회로를 가진 3-GSymbol/s/lane MIPI C-PHY 송수신기)

  • Choi, Seokwon;Song, Changmin;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1257-1264
    • /
    • 2019
  • A 3-GSymbol/s/lane transceiver, which supports the mobile industry processor interface (MIPI) C-physical layer (PHY) specification version 1.1, is proposed. It performs channel mismatch correction to improve the signal integrity that is deteriorated by using three-level signals over three channels. The proposed channel mismatch correction is performed by detecting channel mismatches in the receiver and adjusting the delay times of the transmission data in the transmitter according to the detection result. The channel mismatch detection in the receiver is performed by comparing the phases of the received signals with respect to the pre-determined data pattern transmitted from the transmitter. The proposed MIPI C-PHY receiver is designed using a 65 nm complementary metal-oxide-semiconductor (CMOS) process with 1.2 V supply voltage. The area and power consumption of each transceiver lane are 0.136 ㎟ and 17.4 mW/GSymbol/s, respectively. The proposed channel mismatch correction reduces the time jitter of 88.6 ps caused by the channel mismatch to 34.9 ps.

Photonic-Crystal-Based Thin Film Sensor for Detecting Volatile Organic Compounds (광결정 기반의 휘발성 유기 화합물 검지 박막 센서)

  • Chang, Hyung-Kwan;Park, Jungyul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.149-155
    • /
    • 2016
  • Early detection of toxic gases, such as volatile organic compounds (VOCs), is important for safety and environmental protection. However, the conventional detection methods require long-term measurement times and expensive equipment. In this study, we propose a thin-film-type chemical sensor for VOCs, which consists of self-assembled monosize nanoparticles for 3-D photonic crystal structures and polydimthylsiloxane (PDMS) film. It is operated without any external power source, is truly portable, and has a fast response time. The structure color of the sensor changes when it is exposed to VOCs, because VOCs induce a swelling of the PDMS. Therefore, using this principle of color change, we can create a thin-film sensor for immediate detection of various types of VOCs. The proposed device evidences that a fast response time of just seconds, along with a clear color change, are successfully observed when the sensor is exposed to gas-phase VOCs.

A Study and Design of Beam Scanning Array Antenna using IR-UWB (IR-UWB를 이용한 빔 스캐닝 배열 안테나 설계 및 연구)

  • Kim, Keun-Yong;Kang, Eun-Kyun;Kim, Jin-Woo;Ra, Keuk-Whan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.194-201
    • /
    • 2014
  • This paper is able to be solved by improving degradation in multi-path environment by adjust beam pattern angle through modifying pulse phase of each antennas by using TRM (Transmitter Receiver Module). Beam Scanning Array Antenna, which is transmitter/receiver that improves degradation in multi-path environment without any signal distortion, is designed and manufactured. Beam Scanning Array Antenna should be able to send/receive signal at the antenna's longitudinal part without distortion and should not influences other systems. Also, it should include target detecting ability by beam steering.Dispersion characteristic of Beam Scanning Antenna, which is designed, is analysed by using fidelity, and steering and radar resolution performance is verified by using $1cm{\times}1cm$ sized target. To manufacture Beam Scanning Array Antenna, control board and GUI, which is able to control Vivaldi Antenna for IR-UWB, Tri-Band Wilkinson power divider, and TRM (Transmitter Receiver Module), is designed. Throughout this research, developed Beam Scanning UWB Array Antenna system is adoptable for radar application field. and time domain analysis techniques by using network analyser made the antenna characteristics analysis for setting up antenna more accurate. In addition, it makes beam width checking without difficulties.

Development of High-performance Microwave Water Surface Current Meter for General Use to Extend the Applicable Velocity Range of Microwave Water Surface Current Meter on River Discharge Measurements (전자파표면유속계를 이용한 하천유량측정의 적용범위 확장을 위한 고성능 범용 전자파표면유속계의 개발)

  • Kim, Youngsung;Won, Nam-Il;Noh, Joonwoo;Park, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.8
    • /
    • pp.613-623
    • /
    • 2015
  • To overcome the difficulties of discharge measurements during flood season, MWSCM(micowave water surface current meter) which measures river surface velocities without contacting water has been applied in field work since its development. The existing version of MWSCM is for floods so that its applicability is low due to the short periods of floods. Therefore the renovative redesign of MWSCM to increase the applicability was conducted so that it can be applied to the discharge measurements during normal flows as well as flood ones by extending the measurable range of velocity. A newly developed high-performance MWSCM for general use can measure the velocity range of 0.03-20.0 m/s from flood flows to normal flows, whereas MWSCM for floods can measure the velocity range of 0.5-10.0 m/s. The improvement of antenna isolation between transmitter and receiver to block the inflow of transmitted singals to receiver and the improvement of phase noise of oscillator are necessary for detecting low velocity with MWSCM technology. Separate type antenna of transmitting and receiving signals is developed for isolation enhancement and phase locked loop synthesizer as an oscillator is applied to high-performance MWSCM for general use. Microwave frequency of 24 GHz is applied to the new MWSCM rather than 10 GHz to make the new MWSCM small and light for convenient use of it at fields. Improvement requests on MWSCM for floods-stable velocity measurement, self test, low power consumtion, and waterproof and dampproof-from the users of it has been reflected on the development of the new version of MWSCM.