• Title/Summary/Keyword: Power Walking

Search Result 172, Processing Time 0.042 seconds

Effects of Robot-assisted Gait With Body Weight Support on Torque, Work, and Power of Quadriceps and Hamstring Muscles in Healthy Subjects

  • Hwang, Jihun;You, Sung (Joshua) Hyun;Choi, Woochol Joseph;Yi, Chung-hwi
    • Physical Therapy Korea
    • /
    • v.28 no.3
    • /
    • pp.215-226
    • /
    • 2021
  • Background: Robot-assisted gait training (RAGT) is an effective method for walking rehabilitation. Additionally, the body weight support (BWS) system reduces muscle fatigue while walking. However, no previous studies have investigated the effects of RAGT with BWS on isokinetic strength of quadriceps and hamstring muscles. Objects: The purpose of this study was to investigate the effects of torque, work, and power on the quadriceps and hamstring muscles during RAGT, using the BWS of three conditions in healthy subjects. The three different BWS conditions were BWS 50%, BWS 20%, and full weight bearing (FWB). Methods: Eleven healthy subjects (7 males and 4 females) participated in this study. The Walkbot_S was used to cause fatigue of the quadriceps and hamstring muscles and the Biodex Systems 4 Pro was used to measure the isokinetic torque, work, and power of them. After RAGT trials of each of the three conditions, the subjects performed isokinetic concentric knee flexion and extension, five at an angular velocity of 60°/s and fifteen at an angular velocity of 180°/s. One-way repeated analysis of variance was used to determine significant differences in all the variables. The least significant difference test was used for post-hoc analysis. Results: On both sides, there were significant differences in peak torque (PT) of knee extension and flexion between the three BWS conditions at an angular velocity of 60°/s and 180°/s conditions. A post-hoc comparison revealed that the PT in the BWS 50% was significantly greater than in the BWS 20% and the FWB and the PT in the BWS 20% was significantly greater than in the FWB. Conclusion: The results of this study suggest that the lower BWS during RAGT seems to lower the isokinetic torque, work, and power of the quadriceps and hamstring muscles because of the muscle fatigue increase.

Development of an Intelligent Ankle Assistive Robot (지능형 발목 근력 보조 로봇의 개발)

  • Jeong, Woo-Chul;Kim, Chang-Soon;Park, Jin-Yong;Hyun, Jung-Guen;Kim, Jung-Yup
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.538-546
    • /
    • 2015
  • This paper describes an intelligent ankle assistive robot which provides assistive power to reduce ankle torque based on an analysis of ankle motion and muscle patterns during walking on level and sloped floors. The developed robot can assist ankle muscle power by driving an electric geared motor at the exact timing through the use of an accelerometer that detects gait phase and period, and a potentiometer to measure floor slope angle. A simple muscle assistive link mechanism is proposed to convert the motor torque into the foot assistive force. In particular, this mechanism doesn't restrain the wearer's ankle joint; hence, there is no danger of injury if the motor malfunctions. During walking, the link mechanism pushes down the top of the foot to assist the ankle torque, and it can also lift the foot by inversely driving the linkage, so this robot is useful for foot drop patients. The developed robot and control algorithm are experimentally verified through walking experiments and EMG (Electromyography) measurements.

Physical Functions, Health-Related Outcomes, Nutritional Status, and Blood Markers in Community-Dwelling Cancer Survivors Aged 75 Years and Older

  • Ihira, Hikaru;Mizumoto, Atsushi;Makino, Keitarou;Yasuda, Keisuke;Miyabe, Yoko;Saitoh, Shigeyuki;Ohnishi, Hirofumi;Furuna, Taketo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3305-3310
    • /
    • 2014
  • Background: A cancer survivor is defined as anyone who has been diagnosed with cancer, from the time of diagnosis through the rest of their life. The purpose of this study was to examine whether physical functions, health-related outcomes, nutritional status and blood markers in community-dwelling cancer survivors aged 75 years and older are different from those who do not have cancer Materials and Methods: Two hundred seventy-five participants were asked by physicians, nurses, and physical therapists, questions regarding cancer history in a face-to-face interview. Data were collected for demographic information, physical functions, such as handgrip strength, knee extension power, abdominal muscle strength, static standing balance, walking speed and the timed-up-and-go test, health-related outcomes, nutritional status, and blood markers. The measured parameters of survivor diagnosed with cancer were compared with those without a history of cancer. Results: Thirty-seven older adults were previously diagnosed with cancer. Female cancer survivors had lower knee extension power (p<0.05), abdominal muscle strength (p<0.05), walking speed (p<0.05), timed-up-and-go test score (p<0.05), and time to spend on walking per day (p<0.05) than older women without a history of cancer. In men, none of the measured parameters were significantly different between cancer survivors and older men with no history of cancer. Conclusions: The present study shows that partial physical function of women cancer survivors aged 75 years and older differs from that in women with no history of cancer.

Effect of Shoe Size on Foot Pressure, Ground Reaction Force, and Fatigue During Walking and Running (보행과 달리기 시 신발의 크기가 족저압과 지면반발력, 하지의 근피로에 미치는 영향)

  • Kim, Tack-Hoon
    • Physical Therapy Korea
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • The purpose of this study was to assess the influence of two shoe size conditions on foot pressure, ground reaction force (GRF), and lower extremity muscle fatigue. Seven healthy men participated. They randomly performed walking and running in two different conditions: proper shoe size and 10 mm greater than proper shoe size. Peak foot pressure, and vertical, anterior and mediolateral force components were recorded with the Parotec system and Kisler force platform. To assess fatigue, the participants performed treadmill running for twenty-five minutes twice, each time wearing a different shoe size. Surface electromyography was used to confirm localized muscle fatigue using power spectral analysis of four muscles (tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris). The results were as follows: 1) In walking conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 1, 2, 14, and 18 (p<.05). 2) In running conditions, there was a significantly higher peak pressure in the 10 mm greater than proper shoe size insole sensor 5, 14, and 15 (p<.05). 3) In walking conditions, there was a significantly higher first maximal vertical GRF in the 10 mm greater than proper shoe size (p<.05). 4) In running conditions, no GRF components were significantly different between each shoe size condition (p>.05). 5) Muscle fatigue indexes of the tibialis anterior and rectus femoris were significantly increased in the 10 mm greater than proper shoe size condition. These results indicate that wearing shoes that are too large could further exacerbate the problems of increased foot pressure, vertical GRF, and muscle fatigue.

  • PDF

A Knowledge Based Physical Activity Evaluation Model Using Associative Classification Mining Approach (연관 분류 마이닝 기법을 활용한 지식기반 신체활동 평가 모델)

  • Son, Chang-Sik;Choi, Rock-Hyun;Kang, Won-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.4
    • /
    • pp.215-223
    • /
    • 2018
  • Recently, as interest of wearable devices has increased, commercially available smart wristbands and applications have been used as a tool for personal healthy management. However most previous studies have focused on evaluating the accuracy and reliability of the technical problems of wearable devices, especially step counts, walking distance, and energy consumption measured from the smart wristbands. In this study, we propose a physical activity evaluation model using classification rules, induced from the associative classification mining approach. These rules associated with five physical activities were generated by considering activities and walking times in target heart rate zones such as 'Out-of Zone', 'Fat Burn Zone', 'Cardio Zone', and 'Peak Zone'. In the experiment, we evaluated the prediction power of classification rules and verified its effectiveness by comparing classification accuracies between the proposed model and support vector machine.

Development of a 2-row Type Band Furrow Tiller for a Walking Cultivator (보행형 관리기 부착형 2조식 부분 중경제초기의 개발)

  • Kim, C.S.;Kim, K.D.
    • Journal of Biosystems Engineering
    • /
    • v.32 no.4
    • /
    • pp.223-229
    • /
    • 2007
  • This study was conducted to develop a 2 row type band furrow tiller for a walking cultivator. The tillage and weeding operations in the furrow of dry fields has been done manually or chemical herbicide has been applied. The application of herbicide induces soil pollution and manual operation requires heavy labor. This 2-row type implement was developed to substitute this manual operation and to minimize soil pollution. The developed implement was composed of power transmitting device, tilling device, frame and tail wheel. The max. plowing width and depth were 300mm and 180mm, respectively. The revolutions of the hexagonal shaft and the tillage shaft were $227{\sim}376rpm$ and $355{\sim}590rpm$, respectively. The adequate working speed was $0.50{\sim}0.83m/s$ and the field capacity was $0.17{\sim}0.28hr/10a$.

Design and Control of a Novel Tendon-driven Exoskeletal Power Assistive Device (새로운 와이어 구동방식 외골격 보조기의 설계 및 제어)

  • Kong Kyoung-chul;Jeon Doyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.936-942
    • /
    • 2005
  • Recently the exoskeletal power assistive equipment which is a kind of wearable robot has been widely developed to help the human body motion. For the elderly people and patients, however, some limits exist due to the weight and volume of the equipments. As a feasible solution, a tendon-driven exoskeletal power assistive device fur the lower body, and caster walker are proposed in this research. Since the caster walker carries the heavy items, the weight and volume of the wearable exoskeleton are minimized. The key control is used to generate the joint torque required to assist motions such as sitting, standing and walking. Experiments were performed for several motions and the EMG sensors were used to measure the magnitude of assistance. When the motion of sitting down and standing up was compared with and without wearing the proposed device, the $25\%$ assistance was acquired.

Power Estimation of The Embedded 3D Graphics Renderer (내장형 3차원 그래픽 렌더링 처리기의 전력소모)

  • Jang, Tae-Hong;Lee, Moon-Key
    • Journal of Korea Game Society
    • /
    • v.4 no.3
    • /
    • pp.65-70
    • /
    • 2004
  • The conventional 3D graphic accelerator is mainly focused on high performance in the application area of computer graphic and 3D video game How ever the existing 3D architecture is not suitable for portable devices because of its huge power. So, we analyze the embedded 3D graphics renderer. After the analyzing, to reduce the power, triangle set-up stage and edge walking stage are executed sequentially while scan-line processing stage and span processing stage which control performance of 3D graphic accelerator are executed parallel.

  • PDF

Implementation of High Efficiency Generators Applicable to Climbing Sticks (등산스틱에 적용 가능한 고효율 발전기 구현)

  • Gul-Won Bang
    • Journal of Industrial Convergence
    • /
    • v.22 no.7
    • /
    • pp.15-21
    • /
    • 2024
  • A hiking stick is generally one of the walking aids that allow hikers to walk while relying on their own bodies when walking. A rechargeable battery must be built into the hiking stick, which is an auxiliary device, in order to perform various functions. A separate power supply is required to charge the rechargeable battery. This study is about a self-generated power supply and develops a power generation device using a screw with higher power generation efficiency than the existing method. It is differentiated from the method suggested in this study by comparing and analyzing it with the existing power generation method, and identifying problems therewith. The screw-type power generation device generates power when the climbing stick comes into contact with the ground and when it is separated from the ground. The built-in power generation device does not require a separate power supply, and it can be used by attaching the role of a mobile phone auxiliary battery and a lighting lamp, and it has the effect of being able to find it through location tracking by embedding a GPS sensor, etc., and using lighting to keep the user safe in emergency situations such as distress. The existing generator with built-in mountain climbing stick is difficult to charge due to very weak current and low practicality, but the generator developed in this research could achieve high efficiency to obtain a sufficient current, so it is possible to charge a battery and practicality.