• Title/Summary/Keyword: Power Transfer Efficiency

Search Result 675, Processing Time 0.028 seconds

Development of Ultrasonic Transducer System for Wireless Power Transfer Part 1 : Transmitter Development (무선 전력전송을 위한 초음파 트랜스듀서 시스템 개발 Part 1: 송신소자 개발)

  • Youm, Woo-Sub;Hwang, Gunn;Yang, Woo-Seok;Lee, Sung-Q
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.845-852
    • /
    • 2012
  • Recently, wireless power transfer technology is ready to be commercialized in consumer electronics. It draws attention from not only experts but also public because of its convenience and huge market. However, previous technologies such as magnetic resonance and induction coupling have limited applications because of its short transfer distance compared to device size and magnetic intensity limitation on the safety of body exposure. As an alternative, ultrasonic wireless power transfer technology is proposed. The ultrasonic wireless power transfer system is composed of transmitter which converts electrical energy to ultrasonic energy and receiver which converts the ultrasonic energy to the electrical energy again. This paper is focused on the development of high energy conversion efficiency of ultrasonic transmitter. Optimal transfer frequency is calculated based on the acoustic radiation and damping effect. The transmitter is designed through numerical analysis, and is manufactured to match the optimal transfer frequency with the size of 100 mm diameter, 12.2 mm thickness plate. The energy conversion efficiency of about 13.6 % at 2 m distance is obtained, experimentally. This result is quite high considered with the device size and the power transfering distance.

Performance Analysis of 6.78MHz Current Mode Class D Power Amplifier According to Load Impedance Variation (부하 임피던스 변화에 따른 6.78MHz 전류모드 D급 전력증폭기 특성 해석)

  • Go, Seok-Hyeon;Park, Dae-kil;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.166-171
    • /
    • 2019
  • This paper has designed a current mode class D power amplifier to increase the transmission efficiency of a 6.78 MHz wireless power transfer (WPT) transmitter and to ensure stable characteristics even when the transmitting and receiving coil intervals change. By reducing the loss due to the parasitic capacitor component of the transistor, which limits the theoretical efficiency of the linear amplifier, this research has improved the efficiency of the power amplifier. The circuit design simulator was used to design the high efficiency amplifier, and the power output and efficiency characteristics according to the load impedance change have been simulated and verified. In the simulation, 42.1 dBm output and 95% efficiency was designed at DC bias 30 V. The power amplifier was fabricated and showed 91% efficiency at the output of 42.1 dBm (16 W). The transmitting and receiving coils were fabricated for wireless power transfer of the drone, and the maximum power added efficiency was 88% and the output power was $42.1dBm{\pm}1.7dB$ according to the load change causing from the coil intervals.

Coil Design Scheme using Single-Turn FEM Simulation for Efficiency Optimization of Inductive Power Transfer System (단일 권선 FEM 시뮬레이션을 통한 자기유도형 무선전력전송 코일의 효율 최적화 설계)

  • Seung-Ha, Ryu;Chanh-Tin, Truong;Sung-Jin, Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.471-480
    • /
    • 2022
  • Inductive power transfer (IPT) is an attractive power transmission solution that is already used in many applications. In the IPT system, optimal coil design is essential to achieve high power efficiency, but the effective design method is yet to be investigated. The inductance formula and finite element method (FEM) are popular means to link the coil geometric parameters and circuit parameters; however, the former lacks generality and accuracy, and the latter consumes much computation time. This study proposes a novel coil design method to achieve speed and generality without much loss of accuracy. By introducing one-turn permeance simulation in each FEM phase combined with curve fitting and optimization by MATLAB in the efficiency calculation phase, the iteration number of FEM can be considerably reduced, and the generality can be retained. The proposed method is verified through a 100 W IPT system experiment.

Transfer Efficiency of Underwater Optical Wireless Power Transmission Depending on the Operating Wavelength

  • Kim, Sung-Man;Kwon, Dongyoon
    • Current Optics and Photonics
    • /
    • v.4 no.6
    • /
    • pp.571-575
    • /
    • 2020
  • Optical wireless power transmission (OWPT) is a good candidate for long-distance underwater wireless power transmission. In this work we investigate the transmission efficiency of underwater OWPT, depending on the operating wavelength. We consider four operating wavelengths: infrared, red, green, and blue. We also consider the cases of pure water and sea water for the working conditions. Our results show that it is necessary to select the operating wavelength of underwater OWPT according to the transmission distance and water type of the target application.

Evaluation of AC Resistance in Litz Wire Planar Spiral Coils for Wireless Power Transfer

  • Wang, Xiaona;Sun, Pan;Deng, Qijun;Wang, Wengbin
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1268-1277
    • /
    • 2018
  • A relatively high operating frequency is required for efficient wireless power transfer (WPT). However, the alternating current (AC) resistance of coils increases sharply with operating frequency, which possibly degrades overall efficiency. Hence, the evaluation of coil AC resistance is critical in selecting operating frequency to achieve good efficiency. For a Litz wire coil, AC resistance is attributed to the magnetic field, which leads to the skin effect, the proximity effect, and the corresponding conductive resistance and inductive resistance in the coil. A numerical calculation method based on the Biot-Savart law is proposed to calculate magnetic field strength over strands in Litz wire planar spiral coils to evaluate their AC resistance. An optimized frequency can be found to achieve the maximum efficiency of a WPT system based on the predicted resistance. Sample coils are manufactured to verify the resistance analysis method. A prototype WPT system is set up to conduct the experiments. The experiments show that the proposed method can accurately predict the AC resistance of Litz wire planar spiral coils and the optimized operating frequency for maximum efficiency.

Study on Two-Coil and Four-Coil Wireless Power Transfer Systems Using Z-Parameter Approach

  • Seo, Dong-Wook;Lee, Jae-Ho;Lee, Hyung Soo
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.568-578
    • /
    • 2016
  • A wireless power transfer (WPT) system is usually classified as being of either a two-coil or four-coil type. It is known that two-coil WPT systems are suitable for short-range transmissions, whereas four-coil WPT systems are suitable for mid-range transmissions. However, this paper reveals that the two aforementioned types of WPT system are alike in terms of their performance and characteristics, differing only when it comes to their matching-network configurations. In this paper, we first find the optimum load and source conditions using Z-parameters. Then, we estimate the maximum power transfer efficiency under the optimum load and source conditions, and we describe how to configure the matching networks pertaining to both types of WPT system for the given optimum load and source conditions. The two types of WPT system show the same performance with respect to the coupling coefficient and load impedance. Further, they also demonstrate an identical performance in the two cases considered in this paper, that is, a strong-coupled case and a weak-coupled case.

Constant Output Power Control Methods for Variable-Load Wireless Power Transfer Systems

  • Liu, Xu;Clare, Lindsay;Yuan, Xibo;Wang, Jun;Wang, Chonglin;Li, Jianhua
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.533-546
    • /
    • 2018
  • This study proposes a comprehensive mathematical model that includes coil-system circuit and loss models for power converters in wireless power transfer (WPT) systems. The proposed model helps in understanding the performance of WPT systems in terms of coil-to-coil efficiency, overall efficiency, and output power capacity and facilitates system performance optimization. Three methods to achieve constant output power for variable-load systems are presented based on system performance analysis. An optimal method can be selected for a specific WPT system by comparing the efficiencies of the three methods calculated with the proposed model. A two-coil 1 kW WPT system is built to verify the proposed mathematical model and constant output power control methods. Experimental results show that when the load resistance varies between 5 and $25{\Omega}$, the system output power can be maintained at 1 kW with a maximum error of 6.75% and an average error of 4%. Coil-to-coil and overall efficiencies can be maintained at above 90% and 85%, respectively, with the selected optimal control method.

Efficiency Enhancement of Wireless Power Transfer with Optimum Coupling Mechanism for Mid-range Operation

  • Anowar, Tanbir Ibne;Kumar, Narendra;Ramiah, Harikrishnan;Reza, Ahmed Wasif
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1556-1565
    • /
    • 2017
  • This paper depicts the design, implementation and analysis of efficient resonant based wireless power transfer (WPT) technique using three magnetic coupled coils. This work is suitable for mid ranged device due to small form factor while minimizing the loading effect. A multi turned loop size resonator is exploited for both the transmitter and receiver for longer distance. In this paper, class-E power amplifier (class-E PA) is introduced with an optimum power tracking mechanism of WPT system to enhance the power capability at mid-range with a flat gain. A robust method of finding optimum distance is derived with an experimental analysis of the designed system. In this method, the load sensitive issue of WPT is resolved by tuning coupling coefficient at considerable distances. Our designed PA with a drain efficiency of 77.8% for a maximum output of 5W is used with adopted tuning technique that improves the overall WPT system performance by 3 dB at various operating points.

Optimizing Method for Wireless Charging with Frequency Control (주파수 제어에 의한 무선 충전 최적화 기법)

  • Ahn, Tae-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.275-280
    • /
    • 2013
  • This paper presents an optimizing method for wireless charging system, specifically focused on the capsule endoscope applications. In order to increase the wireless power transfer efficiency of electro-magnetic resonance coupled coils, this paper investigates the impact factors of the power transfer efficiency in small battery capacity system and proposes a efficiency optimizing method based on frequency control. Simulation results show that the proposed efficiency optimal control method can effectively stabilize the wireless power transfer efficiency so as to successfully solve the main issue of transfer efficiency variation with distance and as well as parasitic element.