• 제목/요약/키워드: Power System Disturbance

검색결과 484건 처리시간 0.023초

A New Excitation Control for Multimachine Power Systems II: Robustness and Disturbance Attenuation Analysis

  • Psillakis Haris E.;Alexandridis Antonio T.
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.288-295
    • /
    • 2005
  • In this paper a new adaptive, decentralized excitation control scheme proposed to enhance the transient stability of multimachine power systems is extensively analyzed with respect to its robustness and disturbance attenuation. As shown in the paper, both robustness and disturbance attenuation can be effectively improved by suitably selecting the design parameters of the proposed controller. Particularly, some simple rules for the selection of the control gains and the adaptation parameters are extracted which, as it is proven, may be essential for the system performance. Simulation tests on a two generator infinite bus power system absolutely confirm the theoretical results.

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

비선형 마찰을 갖는 전동 실린더의 위치제어에 관한 연구 (A Study on the Position Control of a Motor Cylinder with Nonlineal Friction)

  • 변정환
    • 동력기계공학회지
    • /
    • 제12권1호
    • /
    • pp.80-86
    • /
    • 2008
  • A motor cylinder apparatus is used to transfer a load in industrial applications. The apparatus is composed of a motor and power transmission elements such as worm gear and screw. In this case, the nonlinear friction of the transmission elements has a bad influence on the position control performance. To overcome this problem, the position control system consists of a feedback controller to achieve nominal control performance and a disturbance observer to compensate nonlinear friction. Especially the filter of a disturbance observer is designed from viewpoint of robust stability. Finally, the simulation result shows that the proposed control system is effective for the disturbance elimination as well as the friction compensation.

  • PDF

전력시스템 고조파 외란의 자동식별 (Automatic Classification of Power System Harmonic Disturbances)

  • 김병철;김현수;남상원
    • 제어로봇시스템학회논문지
    • /
    • 제6권7호
    • /
    • pp.551-558
    • /
    • 2000
  • In this paper a systematic approach to automatic classificationi of power system harmonic disturbances is proposed where the proposed approach consists of the following three steps:(i) detecting and localizing each harmonic disturbance by applying discrete wavelet transform(DWT) (ii) extracting an efficient feature vector from each detected disturbance waveform by utilizing FFT and principal component analysis (PCA) along with Fisher's criterion and (iii) classifying the corresponding type of each harmonic disturbance by recognizing the pattern of each feature vector. To demonstrate the performance and applicability of the proposed classification procedure some simulation results obtained by analyzing 8-class power system harmonic disturbances being generated with Matlab power system blockset are also provided.

  • PDF

Power Quality Improvement for Grid Connected Inverters under Distorted and Unbalanced Grids

  • Kim, Hyun-Sou;Kim, Jung-Su;Kim, Kyeong-Hwa
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1578-1586
    • /
    • 2016
  • A power quality improvement scheme for grid connected inverters, even in the presence of the disturbances in grid voltages due to harmonic distortions and three-phase imbalance, is presented for distributed generation (DG) power systems. The control objective is to force the inverter currents to follow their references with robustness even under external disturbances in grid voltages. The proposed scheme is realized by a disturbance observer (DOB) based current control scheme. Since the uncertainty in a system can be effectively canceled out using an estimated disturbance by the DOB, the resultant system behaves like a closed-loop system consisting of a disturbance-free nominal model. For experimental verification, a 2 kVA laboratory prototype of a grid connected inverter has been built using a digital signal processor (DSP) TMS320F28335. Through comparative simulations and experimental results under grid disturbances such as harmonic distortion and imbalance, the effectiveness of the proposed DOB based current control scheme is demonstrated.

전동기 시스템의 미지외란 및 전류 관측기 설계 (Design of Unknown Disturbance and Current Observer for Electric Motor Systems)

  • 이명석;정경모;공경철
    • 제어로봇시스템학회논문지
    • /
    • 제21권7호
    • /
    • pp.615-620
    • /
    • 2015
  • DOB (Disturbance Observer) is an useful control method for estimating the disturbance applied to dynamic systems. Disturbance observer can be used to implement a robust control system to generate a control input for rejecting the disturbance, and it can be also used to estimate the disturbance to obtain information. The system that uses disturbance estimation is investigated for high performance control such as automatic door systems, walking robot and electric power steering system in vehicles. In this paper, a novel disturbance observer which is called disturbance and current observer for estimating load torque in the motor system is proposed. The difference between the DOB for disturbance rejection and DCOB is mathematically verified. Current and angular velocity are required for estimating the load torque of the motor in DOB. However, the DCOB can estimate load torque and current without current sensor. DCOB is designed based on modeling of the motor system. Appropriate Q-filter is selected and the applicability of DCOB is verified by simulation. The estimated disturbance and current of the electric motor can be verified without current sensor, as experiments of the actual motor system.

외란 관측기 기반의 BLAC 전동기로 구동하는 레일 트랙션 시스템의 위치 제어 (Position Control Scheme of Rail Traction System Based on the BLAC Motor With Disturbance Observer)

  • 조기완;이동희
    • 전력전자학회논문지
    • /
    • 제26권2호
    • /
    • pp.127-134
    • /
    • 2021
  • This study presents an overhang-type rail traction system using dual brushless AC (BLAC) motors with hall sensors. For an accurate position and moving length control of the designed rail traction system, instantaneous position controller using speed reference model and modified disturbance observer for BLAC motor with hall sensor are proposed. The presented speed reference model is designed to satisfy the required performance of 200 mm/s with proper acceleration and deceleration slopes to reduce mechanical vibration. Through the instantaneous speed reference model, instantaneous position and speed errors can be compensated together. Furthermore, the modified disturbance observer for BLAC motors with low-resolution hall sensors can improve the torque and speed control performance. The proposed disturbance observer is based on an actual motor speed. However, the feedback speed information of the hall sensor is not enough for use in the low-speed region. The practical adopted disturbance observer uses an activation speed band to the actual torque controller of the designed rail traction system. The proposed position control scheme is verified by the MATLAB-Simulink model and a practical manufactured traction system. In the computer simulation and experiments, the proposed position control scheme shows advanced control performance.

DSP6416을 이용한 유도기의 정밀 위치 제어 (Precision position control of induction motors using DSP6416)

  • 김현식;김영찬;고종선
    • 전력전자학회논문지
    • /
    • 제12권1호
    • /
    • pp.19-26
    • /
    • 2007
  • 본 논문은 외란 변화에 대하여 정밀위치 변화를 줄이고자 외란 관측기를 사용하였고 이를 유도전동기에 적용하였다. 제안된 알고리즘이 외란 변화에 대한 유도전동기의 정밀 제어에 강인함을 보이고 있다. 외란 관측기가 있는 이 시스템은 높은 실효성과 외란 보상에 뛰어난 데드비트 컨트롤을 사용하고 있다. 이 효과를 보이기 위해서 모의 실험은 Simulink를 사용하였고 DSP6416 및 TCP-IP 네트워크 보드와 연동하여 실험하였다.

외란관측기를 이용한 모션 스테이지의 위치제어 (Position Control of Motion Stage using Disturbance Observer)

  • 박해준;최명수;변정환
    • 동력기계공학회지
    • /
    • 제17권3호
    • /
    • pp.82-88
    • /
    • 2013
  • For commercialized servo drives of the motion stage to include embedded controller, external terminal is provided for tracking command and encoder output, but internal terminal is not for control input. Thus, it is difficult to combine out signal of embedded controller with that of external compensator such as disturbance observer. In this study, for precise tracking control of motion stage without hardware change of the servo drive, tacking control system is composed of an inner loop of servo drive and an outer loop of disturbance observer. Then, the control system is designed so that the output response of actual plant corresponds with nominal model's in transient state as well as in steady state. Finally, the experiment results show that the designed control system is effective to reconcile actual plant behavior with nominal model under nonlinear friction and parameter perturbation.

외란 소거법을 이용한 강인한 전력 계통 안정화 장치 설계 (Design of Robust Power System Stabilizers Using Disturbance Rejection Method)

  • 김도우;윤기갑;김홍필;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.1195-1199
    • /
    • 1998
  • In this paper a design method of robust power system stabilizers is proposed by means of robust linear quadratic regulator design technique under power system's operating condition change, which is caused by inner structure uncertainties and disturbances into a power system. It is assumed that the uncertainties present in the system are modeled as one equivalent signal. In this connections an optimal LQR control input for disturbance rejection, the output feedback gain for eliminating the disturbance are calculated. In this case. PSS input signal is obtained on the basis of weighted ${\Delta}P_e$ and $\Delta\omega$. In order to stabilize the overall control of system. Pole placement algorithm is applied in addition. making the poles of the closed loop system to move into a stable region in the complex plane. Some simulations have been conducted to verify the feasibility of the proposed control method on a machine to infinite bus power system. From the simulation results validation of the proposed method could be achieved by comparisons with the conventional PSS with phase lag-lead compensation.

  • PDF