• Title/Summary/Keyword: Power Semiconductor

Search Result 1,990, Processing Time 0.028 seconds

The CW lasing characteristics of a Cr:LiSAF laser pumped by semiconductor lasers (반도체 레이저에 의해 펌핑되는 Cr:LiSAF 레이저의 연속 발진 특성)

  • 윤장한;박종대;조창호;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.47-51
    • /
    • 1997
  • A Cr:LiSAF laser pumped by semiconductor lasers was constructed. The pumping laser was a high-power semiconductor laser (SDL 7432-H1) of wavelength 674 nm and maximum power of 500 mW. The laser crystal was a Cr:LiSAF of plano-Brewster shape with 3% Cr3+ion concentration and 3 mm in length. The plane facet of the crystal was coated to get the maximum transmittance of pupmping laser and maximu reflection over the 800 - 880 nm bandwidth. V-shaped resonator was used to compensate the astigmatism induced by the crystal. The output power of the Cr:LiSAF laser was 19.4 mW at the pumping power of 290 mW. The wavelength was tuned by a steep dive-angled birefringent filter from 840 nm to 880 nm and the characteristics of the filter were agreed well with a theory.

  • PDF

Development of an Energy MonItorIng System for Gas Scrubber (반도체 공정장비 Gas Scrubber의 에너지 모니터링 시스템개발)

  • Kim, Sun-Man;Im, Ik-Tea;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.2
    • /
    • pp.13-17
    • /
    • 2011
  • We have developed a new energy-consuming monitoring system that has made it possible to measure the energy consumption of a gas scrubber, one of semiconductor processing equipments, and installed this system to the gas scrubber under operating at a manufacture site. Using this system, we have measured consumptions of electric power and processing gas consumed at standby to operating mode. In case of the gas scrubber, processing gas flows continuously into it at standby and operating mode. Therefore, if the electric power has been supplied, the processing gas can flows into the device for 24 hours. Moreover, at operating of gas scrubber, the amount of electricity consumption is 5 kWh. At Standby of gas scrubber, it spends 3kwh. It is certain that the energy consumption is greater at operating mode than at standby mode. The carbon emission rates from 24 hour gas scrubber operation are 236 $kgCO_2$/day of $N_2$, 57 $kgCO_2$/day of electric power and 0.001 $kgCO_2$/day of cooling water. Most of carbon is emitted from $N_2$ gas and electric power consumption.

Dependence of pulse width on the operating parameters in a gain-switched semiconductor laser (이득 스위칭 반도체 레이저에서 동작 파라메터에 대한 출력 펄스 폭의 의존성)

  • 이상훈;명승일;이명우;서동선
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.4
    • /
    • pp.101-108
    • /
    • 1998
  • We examine experimentally the dependence of output width on DC bias, RF power, and RF frequency in a gain-switched semiconductor laser. The optimum short pulses are obtained around threshold DC bias. The DC bias to generatoe shorter pulses decreases the RF power increases, whereas it increases to above threshold as the RF freqnecy increases. The pulse width becomes less sensitive to the variations of the DC bias, as the RF bias, or frquency increases.

  • PDF

Electrical Characteristics of LDMOS Power Device with LDD Structure (Gate-LDD구조를 가진 LDMOS 전력소자의 전기적 특성)

  • Oh Jung-Keun;Kim Nam-Su
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.163-165
    • /
    • 2002
  • LDD구조를 가진 LDMOS 전력소자의 LDD영역과 채널영역변화에 의한 전기적 특성을 비교 조사하였다. MEDICI 시뮬레이션 tool을 이용하여 hot-carrier전류의 특성, ON 저항의 변화, breakdown 전압의 특성과 switch transient 특성을 조사하였다. Gate-drain 사이의 불순물도핑 영역 및 농도에 따른 소자의 특성해석은 LDD구조를 가진 LDMOS가 hot-carrier resistance 및 전력소모 관점에서 우수한 특성을 나타낼 것으로 사료된다

  • PDF

Optimal filter design at the semiconductor gas sensor by using genetic algorithm (유전알고리즘을 이용한 반도체식 가스센서 최적 필터 설계)

  • Kong, Jung-Shik
    • Design & Manufacturing
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2022
  • This paper is about elimination the situation in which gas sensor data becomes inaccurate due to temperature control when a semiconductor gas sensor is driven. Recently, interest in semiconductor gas sensors is high because semiconductor sensors can be driven with small and low power. Although semiconductor-type gas sensors have various advantages, there is a problem that they must operate at high temperatures. First temperature control was configured to adjust the temperature value of the heater mounted on the gas sensor. At that time, in controlling the heater temperature, gas sensor data are fluctuated despite supplying same gas concentration according to the temperature controlled. To resolve this problem, gas and temperature are extracted as a data. And then, a relation function is constructed between gas and temperature data. At this time, it is included low pass filter to get the stable data. In this paper, we can find optimal gain and parameters between gas and temperature data by using genetic algorithm.

Deep Learning-Based Defect Detection in Cu-Cu Bonding Processes

  • DaBin Na;JiMin Gu;JiMin Park;YunSeok Song;JiHun Moon;Sangyul Ha;SangJeen Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.135-142
    • /
    • 2024
  • Cu-Cu bonding, one of the key technologies in advanced packaging, enhances semiconductor chip performance, miniaturization, and energy efficiency by facilitating rapid data transfer and low power consumption. However, the quality of the interface bonding can significantly impact overall bond quality, necessitating strategies to quickly detect and classify in-process defects. This study presents a methodology for detecting defects in wafer junction areas from Scanning Acoustic Microscopy images using a ResNet-50 based deep learning model. Additionally, the use of the defect map is proposed to rapidly inspect and categorize defects occurring during the Cu-Cu bonding process, thereby improving yield and productivity in semiconductor manufacturing.

  • PDF

Study on Modeling of GaN Power FET (GaN Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk;Kim, Beum-Jun;Lee, Young-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.51-51
    • /
    • 2009
  • In this paper, we proposed GaN trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, GaN and SiC power devices is next generation power semiconductor devices. We carried out modeling of GaN SIT with 2-D device and process simulator. As a result of modeling, we obtained 340V breakdown voltage. The channel thickness was 3um and the channel doping concentration is 1e17cm-3. And we carried out thermal characteristics, too.

  • PDF

Performance Test for the Performance Reliability of the Heat Pipe for Cooling Power Semiconductors (전력반도체 냉각용 히트파이프의 성능안정성 파악을 위한 성능시험)

  • 강환국
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2004
  • The heat pipe for cooling power semiconductor is required no performance changing during the life cycle up to 20 years. For the long reliable performance of the heat pipe, my reasons that has possibility to generate non condensable gases we not allowed. In this research, the maximum heat transport rate and operation characteristics that are related to various geometric and thermal conditions are carried out. Also the test items, specifications and methods to guarantee the long life cycle of the heat pipe for power semiconductor cooling device are provided and the tests are performed.

Study on Modeling of GaN Power FET (GaN Power FET 모델링에 관한 연구)

  • Kang, Ey-Goo;Chung, Hun-Suk;Kim, Beum-Jun;Lee, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.12
    • /
    • pp.1018-1022
    • /
    • 2009
  • In this paper, we proposed GaN trench Static Induction Transistor(SIT). Because The compound semiconductor had superior thermal characteristics, GaN and SiC power devices is next generation power semiconductor devices. We carried out modeling of GaN SIT with 2-D device and process simulator. As a result of modeling, we obtained 340 V breakdown voltage. The channel thickness was 3 urn and the channel doping concentration is $1e17\;cm^{-3}$. And we carried out thermal characteristics, too.

A Generalized Loss Analysis Algorithm of Power Semiconductor Devices in Multilevel NPC Inverters

  • Alemi, Payam;Lee, Dong-Choon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2168-2180
    • /
    • 2014
  • In this paper, a generalized power loss algorithm for multilevel neutral-point clamped (NPC) PWM inverters is presented, which is applicable to any level number of multilevel inverters. In the case of three-level inverters, the conduction loss depends on the MI (modulation index) and the PF (power factor), and the switching loss depends on a switching frequency, turn-on and turn-off energy. However, in the higher level of inverters than the three-level, the loss of semiconductor devices cannot be analyzed by conventional methods. The modulation depth should be considered in addition, to find the different conducting devices depending on the MI. In a case study, the power loss analysis for the three- and five-level NPC inverters has been performed with the proposed algorithm. The validity of the proposed algorithm is verified by simulation for the three-and five-level NPC inverters and experiment for three-level NPC inverter.