• Title/Summary/Keyword: Power Measurement

Search Result 4,626, Processing Time 0.035 seconds

RF and Microwave Power Standards from 10 MHz to 40 GHz over Decades

  • Kang, Tae-Weon;Kwon, Jae-Yong;Park, Jeong-Il;Kang, No-Weon
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.88-93
    • /
    • 2018
  • Radio frequency (RF) and microwave power is one of the key quantities in the framework of electromagnetic measurement standards. Therefore, the stability of the power standard is essential to users' reliable measurements in various areas. Coaxial and waveguide thermistor mounts are used as transfer standards of RF and microwave power. Over decades, the effective efficiencies of thermistor mounts have been measured using coaxial and waveguide microcalorimeters in the frequency range of 10 MHz-40 GHz. The measurement uncertainty of the effective efficiency is evaluated. Results show that the power standards have been well maintained within the measurement uncertainty.

Precision Current Measurement of Magnet Power Supply at the PLS-II (포항가속기연구소 전자석전원장치 출력 전류 정밀 측정)

  • Kim, Sung-chul;An, Suk-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.67-68
    • /
    • 2016
  • The accurate measurement of magnet power supplies (MPS) output currents is essential to delivering stable and repeatable currents to magnets in particle accelerators. An essential element in guaranteeing and evaluating the required performance is the current measurement device and methode. In this paper, we discuss instrument and methods for precision current measurement and performance of the PLS-II MPS.

  • PDF

Design and Implementation of High Power Source Measurement Unit (고 전력 Source Measurement Unit의 설계 및 제작)

  • Lee, Sang-Gu;Baek, Wang-Gi;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.860-863
    • /
    • 2003
  • In this paper high power SMU(Source Measurement Unit) having 50V/1.5A source/measure range has been designed and implemented. The SMU has two operation mode, voltage mode and current mode. The SMU can be used as variable voltage source, variable current source, voltage meter, or current meter. Combining two different unit, output power can be doubled as 100V/1.5A. The developed SMU tan be used many semiconductor testing system and electronic device inspecting system.

  • PDF

Study for the Uncertainty Estimation of Output Power under the Mismatch Condition of Power Amplifiers (전력증폭기 부정합 조건에서의 출력 전력 불확도 산출에 관한 연구)

  • Lee, Garam;Park, Youngcheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.8
    • /
    • pp.802-807
    • /
    • 2014
  • In this paper, an accurate method to estimate the measurement uncertainty of a power amplifier was proposed. Because power amplifiers incorporate mismatch at the drain for the optimal performance, the general method is not enough to produce precise measurement uncertainty of the output power. In order to supplement this method, We suggest comprehensive power measurement uncertainty which is utilized by a complex reflection coefficient and measurement uncertainty of S-parameter which contain the mismatch at the drain on the power amplifier. After that, we compared it with real measurement results of the 10 watt power amplifier which operates on 3.7 GHz. As a result, suggested measurement uncertainty could obtain the uncertainty of output power near 10 times accurate in comparison with existing uncertainty calculation method.

Development of Light Transmission Fluctuation for Particle Measurement in Solid-Gas Two Phase Flows

  • YANG, Bin;WANG, Zhan-ping;HE, Yuan;CAI, Xiao-Shu
    • Particle and aerosol research
    • /
    • v.12 no.1
    • /
    • pp.21-26
    • /
    • 2016
  • In order to realize In-line and convenient measurement for solid-gas two phase flows, Light Transmission Fluctuation (LTF) based on the random variation of transmitted light intensity, light scattering theory and cross-correlation method was presented for online measurement of particle size, concentration and velocity. The statistical relationship among transmitted light intensity, particle size and particle number in measurement zone was described by Beer-Lambert Law. Accordingly, the particle size and concentration were determined from the fluctuation signal of transmitted light intensity. Simultaneously, the particle velocity was calculated by cross-correlation analysis of two neighboring light beams. By considering the influence of concentration variation in industrial applications, the improved algorithm based on spectral analysis of transmitted light intensity was proposed to improve measurement accuracy and stability. Therefore, the online measurement system based on LTF was developed and applied to measure pulverized coal in power station and raw material in cement plant. The particle size, concentration and velocity of powder were monitored in real-time. It can provide important references for optimal control, energy saving and emission reduction of energy-intensive industries.

A Study on measurement for effective isotropic radiated power based power management of the base stations (등가등방성복사전력 기반의 기지국 출력 관리를 위한 측정 연구)

  • Lim, Jae-Choon;Kim, Jong-Heon;Moon, Sung-Won;Lee, Young-Hwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.118-125
    • /
    • 2011
  • In this paper, a WCDMA experimental base station is constructed for power management of mobile communication base station and effective isotropic radiated power is determined by using received power of pilot channel measured on the line-of sight. The measurement system was constructed by a experimental base station and a measurement receiver and the common pilot channel (CPICH) power of the base station was measured. Effective isotropic radiated power (EIRP) of the base station obtained by the measurement value considering correction factor for the errors represented the difference of 0.5 dB compared to the established EIRP of the base station.

Study of Power Quality Measurement U57 Windturbine (U57 풍력발전기 전력품질 실증연구)

  • Lee, Byung-Chul;Park, Hee-Chul;Hwang, Jin-Su;Ryu, Ji-June
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.310-314
    • /
    • 2008
  • The exploitation of the wind energy resource is a rapidly growing area world-wide. The number of installed units is continuously increasing, and it is important to respect and to deal with the impact of wind turbine. This paper addresses the power quality characteristics of U57 Wind Turbine. 750kW gearless type wind turbine for low wind speed, named U57, is developed by UNISON. The power quality measurement system consists of measuring WTG output current, line-to line voltage and wind speed signal. With using measured data, power quality measurement is evaluated about maximum power, reactive power, voltage fluctuation, harmonics according to IEC 61400-21.

  • PDF

A Study on Structural Intensity Measurement of 2-dimensional Structure (2차원 구조물의 진동 인텐시티 계측에 대한 연구)

  • 이덕영;박성태
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.477-488
    • /
    • 1997
  • In order to control vibration in structures, it is desirable to be able to identify dominant paths of vibration transmission from sources through the structure to some points of interest. Structural intensity vector(power flow per width of cross section) using cross spectra is able to measure the vibration power flow at a point in a structure. This paper describes the structural intensity measurement of 2-dimensional structure. Structural intensity of 2-dimensional structure can be obtained from eight point cross spectral measurement per axis, or two point measurement per axis on the assumption of far field. Approximate formulation of the relation between bending waves in structures and structural intensity makes it possible to separate the wave components by which one can get a state of the vibration field. Experimental results are obtained on an infinite plate at the near and far field in flexural vibration. The measurement error of two point measurement is rather bigger than eight point measurement on account of the assumption that Poisson's ratio is 1. The structural intensity vectors on the plate are checked the ability to identify the path of vibration power flow in random excitation and 200Hz sine excitation, the result of two point measurememt is almost the same as the result of eight point measurement in 200Hz sine excitation.

  • PDF

The evaluation of measurement system for high power tests (대전력시험에 사용되는 측정시스템의 평가)

  • Lee, Dong-Jun;Jung, Heung-So;Kim, Won-Man;Kim, Sun-Koo;Ra, Dae-Ryeol;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.286-288
    • /
    • 2002
  • The rapid development of measurement systems for high power tests makes it possible to measure signals as well as analyze with the help of computer. Also, methods to evaluate such measurement systems are required recently. Uncertainty has been regarding as the most important factor in evaluating the measurement systems. Because of the character of the measurement systems for high power tests. the uncertainty shall be evaluated by each component. If the uncertainty evaluated by each component, it is convenient to evaluate total uncertainty of the measurement systems according to each component setting's combination. In this paper each component of high current measurement system of high power testing Dept. II in Korea Electrotechnology Research Institute is evaluated except sensors such as shunts and CTs. The total uncertainty of the measurement systems can be determined by that of each component including uncertainty of sensors.

  • PDF

Development of Wall-Thinning Evaluation Procedure for Nuclear Power Plant Piping-Part 1: Quantification of Thickness Measurement Deviation

  • Yun, Hun;Moon, Seung-Jae;Oh, Young-Jin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.820-830
    • /
    • 2016
  • Pipe wall thinning by flow-accelerated corrosion and various types of erosion is a significant and costly damage phenomenon in secondary piping systems of nuclear power plants (NPPs). Most NPPs have management programs to ensure pipe integrity due to wall thinning that includes periodic measurements for pipe wall thicknesses using nondestructive evaluation techniques. Numerous measurements using ultrasonic tests (UTs; one of the nondestructive evaluation technologies) have been performed during scheduled outages in NPPs. Using the thickness measurement data, wall thinning rates of each component are determined conservatively according to several evaluation methods developed by the United States Electric Power Research Institute. However, little is known about the conservativeness or reliability of the evaluation methods because of a lack of understanding of the measurement error. In this study, quantitative models for UT thickness measurement deviations of nuclear pipes and fittings were developed as the first step for establishing an optimized thinning evaluation procedure considering measurement error. In order to understand the characteristics of UT thickness measurement errors of nuclear pipes and fittings, round robin test results, which were obtained by previous researchers under laboratory conditions, were analyzed. Then, based on a large dataset of actual plant data from four NPPs, a quantitative model for UT thickness measurement deviation is proposed for plant conditions.