• Title/Summary/Keyword: Power LED system

Search Result 567, Processing Time 0.035 seconds

The Smart Monitoring System for implementing All-in-One 9-Nautical mile LED lantern (일체형 9해리 LED 등명기 구현을 위한 스마트 모니터링 시스템)

  • Lim, Gyu-Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1349-1354
    • /
    • 2021
  • An All-in-one LED lantern is a light device to determine the fairway of ships in operation. The current all-in-one LED lantern powered by solar energy is challenged by insufficient power capacity due to limited sun hours. This article presents an all-in-one 9-Nautical mile LED lantern driven by solar and wind power that is abundant maritime renewable energy. Furthermore, the remote smart monitoring system is developed. A smart control system capable of remote control of the lantern was implemented by using the LED lantern device and monitoring system as IoT. This technology that realtime condition monitoring and remote control are developed for safe ship navigation. We expect that maintaining the accuracy and consistency of LED lanterns prevents marine accidents and reduces social costs.

A High Efficiency LED Driver Circuit using LLC Resonant Converter (LLC 공진형 컨버터를 이용한 고효율 조명용 LED 구동회로)

  • Shin, Dae-Seong;Jung, Young-Jin;Hong, Sung-Soo;Han, Sang-Kyu;Jang, Byung-Jun;Kim, Jong-Hae;Lee, Il-Oun;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • This paper presents the Two-stage LED Driving system using LLC resonant converter for LED lighting application. Due to the existence of the nonisolation DC/DC converter to control the LED current and the light intensity, the conventional three-stage LED Driving system has the problem of low power conversion efficiency. To solve this problem, a novel scheme without any nonisolation DC/DC converter is proposed, in which, the isolated DC/DC converter, e.g., LLC resonant converter in the paper, can perform the LED current control and stage, e.g., PFC stage and LLC stage, the efficiency can be significantly improved. Moreover, the cost and the volume of the whole LED driving system can be reduced compared to those of the conventional ones. The operational principle and the characteristics of the proposed scheme are presented. The proposed scheme is verified experimentally with a 45W output prototype LED driver.

Design of New LED Drive using Energy Recovery Circuit (에너지 회수 회로를 이용한 새로운 LED 구동드라이브 설계)

  • Han, Man-Seung;Lim, Sang-Kil;Park, Sung-Jun;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.9-17
    • /
    • 2011
  • The high-power LED (Light Emitting Diode) which is recently gaining popularity as a digital light source has such advantages as low power consumption, long life, fast switching speed, and high efficiency. Thus, many efforts are being made to use the high-power LEDs for general lighting. This paper proposes LED driving circuit uses a DC/DC converter that can recover energy to compensate for the current variations caused by changes in LED equivalent resistance following a temperature change instead of serial resistance. The maximum input voltage of this DC/DC converter has low voltage variations by temperature change when the rated current is formed. In order to return current to the input side, we need a high boosting at low power. Thus, to improve the low efficiency of power converter, the power converter can be configured in such a way to gather the powers of low-capacity DC/DC converters and return the total power. Experiments showed that the proposed system improved efficiency compared to the conventional LED drive using the existing DC/DC converter.

Floating Voltage Stacked LED Driver for Low Voltage Stress and Multi-channel Current Balancing (저 전압스트레스 및 다채널 전류평형을 위한 Floating 전압 스택형 단일스위치 LED 구동회로)

  • Hwang, Won-sun;Ryu, Dong-kyun;Choi, Heung-kyun;Kim, Hugh;Han, Sang-kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.295-296
    • /
    • 2014
  • 본 논문에서는 저 전압 스트레스 및 다채널 전류평형을 위한 Floating 전압 스택형 단일스위치 LED(Light Emitting Diode) 구동회로를 제안한다. 기존의 다채널 LED 구동회로는 LED 채널 수 만큼 boost converter가 필요하지만, 제안된 LED 구동회로는 단 하나의 buck converter와 n-1개의 balancing capacitor만을 필요로 한다. 기존 boost converter의 경우 모든 구성 요소는 LED 전압만큼의 높은 전압 스트레스를 갖지만 제안 회로의 경우 모든 구성 요소들은 기존 대비 절반 정도의 전압 스트레스를 갖는다. 또한 제안 LED 구동회로는 다채널의 LED 전류의 평형을 위하여 balancing capacitor만을 사용하기 때문에 높은 신뢰성과 비용의 효율성을 제공한다. 최종적으로 제안된 구동회로의 우수성과 이론적 분석의 타당성 검증을 위하여 46" 2채널 LED 구동회로를 위한 시작품을 제작하여 고찰된 실험결과를 제시한다.

  • PDF

Capacitor-Diode Current-Balancing Circuit for Multi-Channel LED Backlight System (다중채널 LED 백라이트를 위한 Capacitor-Diode 전류평형 회로)

  • Park, Sung-Han;Jung, Young-Jin;Hong, Sung-Soo;Han, Sang-Kyoo
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.222-223
    • /
    • 2011
  • 최근 저전력 소모와 얇은 두께, 무 수은, 다양한 색 표현력, 빠른 응답 속도 등의 다양한 장점을 가진 LED(Light Emitting Diode)를 광원으로 이용하는 LCD(Liquid Crystal Display) TV가 큰 주목을 받고 있다. 이러한 LCD TV의 화면을 균등한 휘도로 표현하기 위해 기존의 구동회로는 다 채널의 LED를 정전류로 제어하는 DC/DC 컨버터가 채널마다 각각 적용되었고, 이는 원가 상승 및 효율 저하의 원인이 되었다. 이를 해결하기 위하여 본 논문에서는 각 LED 채널에 적용되는 DC/DC 컨버터 없이 트랜스포머, 커패시터, 다이오드를 이용하여 모든 LED 채널의 정전류 제어가 가능한 저가격형 구동회로를 제안한다. 이는 전력변환 효율과 전력밀도를 획기적으로 개선할 수 있고 수동소자만을 사용하므로 높은 신뢰성을 확보할 수 있다. 본 논문에서는 제안된 회로에 대한 이론적 해석과 실험을 통해 제안 회로의 타당성을 검증한다.

  • PDF

The AC Chopper LED Driving System Using The Y Type Balancing Transformer (Y형 밸런싱 트랜스포머를 적용한 AC초퍼 LED 구동 시스템)

  • Kim, Jin-Gu;Yoo, Jin-Wan;Kim, Yong-Ha;Park, Chong-Yeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.3
    • /
    • pp.22-29
    • /
    • 2015
  • The AC-LED driving system which is connected directly to alternative current source is suitable for commercialization because of it's simple structure and low cost. However, it requires additional circuits compensating for current differences between the parallel connected LED strings. In this paper, we proposed the circuit compensating for current error of the three LED strings using the Y type balancing transformer. The proposed Half-bridge AC Chopper LED driving system used the ferrite material's balancing transformer. at the same time, it is able to dimming control. The proposed system is applied to 80W AC-LED module consist of three parallel strings. Experiment results present that Power factor and THD measured with power analyzer are 0.958 and 26.473% respectively satisfied with IEC61000-3-2 harmonics standard.

Evaluation on the lighting performance of a dynamic LED lighting system (동적 LED 시스템의 조명원적 성능분석)

  • Kim, Hyo-In;Kim, Jeong-Tai;Yun, Geun-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • LED lighting has received much attention in recent years due to its high energy efficiency and environmental friendliness. As the color of light can be obtained by adjusting the light intensity of LEDs, the quality of visual environment can be improved. The aims of this study are to develop a wavelength adjustable LED lighting system and to examine its lighting performances. The LED lighting system and experimental cell for assessment of the lighting performance were constructed. This LED lighting system is able to materialize the various spectral power distribution and color temperature of light through the control of the four dimmers. Up to $432^4$ kinds of light combinations are possible. The range of illuminance on workplane were measured as 7~1,831 ㏓. Improvement of psychological and physical functions for occupants can be expected according to control of lighting performances.

The Design of High efficiency multi-channel LED light Driver suitable for Streetlamp (가로등에 적합한 고효율 멀티채널 LED 조명 구동장치 설계)

  • Song, Je-Ho;Kim, Hwan-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4489-4493
    • /
    • 2014
  • LED light driving device has problems in efficiency and heating at higher than 150W. In addition, there is inconvenience in replacing the lighting device to another when W is not the same as the previous one. In this paper, a multi-channel LED light driver, driver embedded driver circuit in a multi-channel structure with a power system in the driver-interlocking structure was designed. With the auto control converter structure with a power efficiency above 93% and power factor above 0.98, the weight of the high efficiency LED lighting-actuating device in driver-interlocking structure, a driver in self-calibrating self-optimization structure. In this paper, at below 10% THD, the existing converter contrast weight was reduced by 40% or more.

Research on Development of a dynamic LED lighting system (동적 LED 조명 시스템의 개발에 대한 연구)

  • Choi, Jong-Dae;Kim, Hyo-In;Yun, Geun-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.168-173
    • /
    • 2011
  • Recently, from a saving energy and environmental lighting sources point of view, using LED lighting have been increased rapidly. The colors of light was applied to the control of dimmers that is composed of red, green, blue, and white(RGBW) to improve the quality of visual environment. Moreover this study has been processed to develop adjustable dynamic LED lighting system on SPD and definitize the various spectral power distribution and color temperature of light through the control of the four dimmers. It is possible to combine up to $432^4$ kinds of light. Measurement of illuminance of range on working surface was as 7~l,831 lux. Application of visual environment for occupants can be expected according to control of lighting performance.

  • PDF

A David Star Magic Square Algorithm for Efficient LED Control (효율적인 LED 제어를 위한 다윗 스타 마방진 알고리즘)

  • Lee, Kyung-Min;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.109-113
    • /
    • 2016
  • In this paper, we propose efficient LED lighting control algorithm using a David star magic square. Such algorithms increases the power reduction, the heat efficiency and LED life cycle and the efficiency of the LED lighting control consumption. Lighting system using existing Magic square algorithm could be reduced to increase the heat efficiency of the LED because the LED lighting time of the reduced cross-lighting. but it has a limit to the lighting control. If should apply the this proposed algorithm, can reduces power consumption and increases LED life-cycle, heat efficiency of LED lighting module and efficiency of the lighting control of the LED. This paper proposed that algorithm is by using a David star magic square on the LED Matrix. Divided into twelve areas to move the pattern in constant time interval, to perform the cross rotation and inversion techniques to thereby light up. In this paper proposed algorithm of this paper was compared with existing Magic square approach. As a result, power consumption and heat-value and luminous flux was reduced as the conventional lighting system. And, the LED lighting control increase the efficiency.