• Title/Summary/Keyword: Power IGBT

Search Result 632, Processing Time 0.022 seconds

A New Active Gate Drive Circuit for High Power IGBTs (대용량 IGBT를 위한 새로운 능동 게이트 구동회로)

  • 서범석;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.111-121
    • /
    • 1999
  • This paper deals with an active gate drive (AGD) technolo밍T for high power IGBTs. It is based on an optimal c combination of several requirements necessmy for good switching performance under hard switching conditions, The s scheme specifically combines together the slow drive requirements for low noise and switching stress and the fast driver requirements for high speed switching and low switching energy loss The gate drive can also effectively dampen oscillations during low cunent turnlongrightarrowon transient in the IGBT, This paper looks at the conflicting requirements of the c conventional gate dlive circuit design and the experimental results show that the proposed threelongleftarrowstage active gate dlive t technique can be an effective solution.

  • PDF

Modeling and Thermal Characteristic Simulation of Power Semiconductor Device (IGBT) (전력용 반도체소자(IGBT)의 모델링에 의한 열적특성 시뮬레이션)

  • 서영수;백동현;조문택
    • Fire Science and Engineering
    • /
    • v.10 no.2
    • /
    • pp.28-39
    • /
    • 1996
  • A recently developed electro-thermal simulation methodology is used to analyze the behavior of a PWM(Pulse-Width-Modulated) voltage source inverter which uses IGBT(Insulated Gate Bipolar Transistor) as the switching devices. In the electro-thermal network simulation methdology, the simulator solves for the temperature distribution within the power semiconductor devices(IGBT electro-thermal model), control logic circuitry, the IGBT gate drivers, the thermal network component models for the power silicon chips, package, and heat sinks as well as the current and voltage within the electrical network. The thermal network describes the flow of heat form the chip surface through the package and heat sink and thus determines the evolution of the chip surface temperature used by the power semiconductor device models. The thermal component model for the device silicon chip, packages, and heat sink are developed by discretizing the nonlinear heat diffusion equation and are represented in component from so that the thermal component models for various package and heat sink can be readily connected to on another to form the thermal network.

  • PDF

Study on improvement of on-state voltage drop characteristics According to Variation of JFET region of IGBT structure (IGBT 구조의 JFET영역 변화에 따른 온-상태 전압강하 특성 향상을 위한 연구)

  • Ahn, Byoung-Sup;Kang, Ey-Goo
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.339-343
    • /
    • 2018
  • Power semiconductors are semiconductors capable of controlling power over 1W and are mainly used as switches. This power semiconductor device has been developed with the goal of reducing power consumption and high breakdown voltage. This research was analyzed electrical characteristics of IGBT(Insulated Gate Biopolar Transistor) according to diffusion length of JFET region. The Diffusion length of JFET region was controlled by temperature and time using T-CAD simulator. As a result of experiments, we could obtain 1.14V low on state voltage drop by fixing 1440V breakdown voltage.

Heat Dissipation Technology of IGBT Module Package (IGBT 전력반도체 모듈 패키지의 방열 기술)

  • Suh, Il-Woong;Jung, Hoon-Sun;Lee, Young-Ho;Kim, Young-Hun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.3
    • /
    • pp.7-17
    • /
    • 2014
  • Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

An Improved Gate Control Scheme for Overvoltage Clamping Under High Power IGBTs Switching (IGBT 스위칭시 괴전압 제한을 위한 게이트 구동기법)

  • 김완중;최창호;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.323-327
    • /
    • 1998
  • Under high power IGBTs Switching, a large overvoltage is induced across the IGBT module due to the stray inductance in the circuit. This paper proposes a new gate drive circuit for high power IGBTs which can actively suppress the overvoltage across the driven IGBT at turn-off while preserving the most simple and reliable power circuit. The turn-off driving scheme has adaptive feature to the amplitude of collector current, so that the overvoltage can be limited much effectively at the fault collector current. Experimental results under various normal and fault conditions prove the effectiveness of the proposed.

  • PDF

High Voltage IGBT Improvement of Electrical Characteristics (고내압 IGBT의 전기적 특성 향상에 관한 연구)

  • Ahn, Byoung-Sup;Chung, Hun-Suk;Jung, Eun-Sik;Kim, Seong-Jong;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.3
    • /
    • pp.187-192
    • /
    • 2012
  • Development of new efficient, high voltage switching devices with wide safe operating area and low on-state losses has received considerable attention in recent years. One of those structures with a very effective geometrical design is the trench gate Insulated Gate Bipolar Transistor(IGBT).power IGBT devices are optimized for high-voltage low-power design, decided to aim. Class 1,200 V NPT Planer IGBT, 1,200 V NPT Trench IGBT for class has been studied.

The Develop of Super Junction IGBT for Using Super High Voltage (대용량 전력변환용 초접합 IGBT 개발에 관한 연구)

  • Chung, Hun-Suk;Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.8
    • /
    • pp.496-500
    • /
    • 2015
  • This paper was proposed the theoretical research and optimal design 3000V super junction NPT IGBT for using electrical automotive and power conversion. Because super junction IGBT was showed ultra low on resistance, it was structure that can improve the thermal characteristics of conventional NPT IGBT. The electrical characteristics of super junction NPT IGBT were 2.52 V of on state voltage drop, 4.33 V of threshold voltage and 2,846 V breakdown voltage. We did not obtaing 3,000 V breakdown voltage but we will obtain 3,000 V breakdown voltage through improving p pillar layer. If we are carried this research, This device will be used electrical automotive, power conversiton and high speed train.

Analysis of Electrical Characteristics of Dual Gate IGBT for Electrical Vehicle (전기자동차용 이중 게이트 구조를 갖는 전력 IGBT소자의 전기적인 특성 분석)

  • Kang, Ey Goo
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • IGBT (Insulated Gate Bipolar Transistor) device is a device with excellent current conducting capability, it is widely used as a switching device power supplies, converters, solar inverter, household appliances or the like, designed to handle the large power. This research was proposed 1200 class dual gate IGBT for electrical vehicle. To compare the electrical characteristics, The planar gate IGBT and trench gate IGBT was designd with same design and process parameters. And we carried to compare electrical characteristics about three devices. As a result of analyzing electrical characteristics, The on state voltage drop charateristics of dual gate IGBT was superior to those of planar IGBT and trench IGBT. Therefore, Aspect to Energy Loss, dual gate IGBT was efficiency. The breakdown volgate and threshold voltage of planar, trench and dual gate IGBT were 1460V and 4V.

The Study on High-Frequency Switching Drive Method Using IGBT For Non-Magnetic Induction Heating System (비자성 유도가영시스템을 위한 IGBT를 이용한 고속스위칭 구동에 관한 연구)

  • 김정태;권경안;정윤철;박병욱
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.24-26
    • /
    • 1998
  • A new high frequency switching drive method using IGBT is proposed for non-magnetic induction heating system. Using this method, the switching and conduction losses of the switching devices can be reduced. In addition, since IGBT cosl is lower than MOS-FET one, the system cosl can be remarkably pared down. The prototype induction heating system with 1.2㎾ power consumption is builted and tested to verify the operation of the proposed high frequency switching drive method.

  • PDF

Three level ZCT IGBT inverter for High Power Applications (대전력 응용을 위한 고효율 3레벨 ZCT IGBT 인버터)

  • Lee, Seong-Yong;Lee, Dong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.34-41
    • /
    • 1999
  • A three-level ZCT(Zero Current Transition) IGBT inverter is presented for high power IGBT inverters. The concept of ZCT for the conventional boost converter is extended to the three-level inverter. Moreover, in order to improve the reliability of inverter, midpoint charge balance problem of the three-level inverter is analyzed with respect 150kw, 20kHz prototype are presented to verify the principle of ZCT Operation.

  • PDF