• Title/Summary/Keyword: Power IGBT

Search Result 632, Processing Time 0.031 seconds

High Efficiency DC-DC Converter Using IGBT-MOSFET Parallel Swit (IGBT-MOSFET 병렬 스위치를 이용한 고효율 직류-직류 변환기)

  • 장동렬;서영민;홍순찬;윤덕용;황용하
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.460-465
    • /
    • 1998
  • Due to high power ratings and low conduction loss, the IGBT has become more attractive in switching power supplies. However, its turn-on and turn-off characteristics cause severe switching loss and switching frequency limitation. This paper proposes 2.4kW, 48V, high efficiency half-bridge DC-DC converter using paralleled IGBT-MOSFET switch concept, where each of IGBT and MOSFET plays its part during on-periods and switching instants. The switching loss is analyzed by using the linearized model and the opteration of the converter are investigated by simulation results.

  • PDF

The Study on Parallel operation of IGBT for the Medium SE the Large capacity Inverter ($\cdot$ 대용량 인버터용 IGBT 병렬 운전 연구)

  • Park G.T.;Yoon J.H.;Jung M.K.;Kim D.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.430-433
    • /
    • 2003
  • IGBTS are widely used for the industrial inverters in the mid power range at low voltage (440V$\~$660V) application. Advantageous features of the device are simple gate drive and high speed switching capability. Due to these advantages the application of IGBTS is enlarging into the high power application. However, to increase the power handling capacity at lower input voltage level, the current rating in each bridge arm must be enlarged. Therefore the parallel operation of IGBT devices is essentially needed. This paper describes the feasible parallel structures of the power circuit for the mid & the high power inverters and introduces the important design condition for the parallel operation of IGBT devices. To verify feasibility of the IGBT parallel operation, the feature of several IGBT devices (EUPEC, SEMIKRON's IGBT) are investigated and the power stacks are implemented and tested with these devices. The experimental results show the good characteristics for the parallel operation of IGBTS.

  • PDF

The Study of Inverter Module with applying the RC(Reverse Conduction) IGBT (RC(Reverse Conduction) IGBT를 적용한 Inverter Module에 대한 연구)

  • Kim, Jae-Bum;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.359-359
    • /
    • 2010
  • IGBT(Insulated Gate Bipolar Transistor) 란 MOS(Metal Oxide Silicon) 와 Bipolar 기술의 결정체로 낮은 순방향 손실(Low Saturation)과 빠른 Speed를 특징으로 기존의 Thyristor, BJT, MOSFET 등으로 실현 불가능한 분양의 응용처를 대상으로 적용이 확대 되고 있고, 300V 이상의 High Power Application 영역에서 널리 사용되고 있는 고효율, 고속의 전력 시스템에 있어서 필수적으로 이용되는 Power Device이다. IGBT는 출력 특성 면에서 Bipolar Transistor 이상의 전류 능력을 가지고 있고 입력 특성 면에서 MOSFET과 같이 Gate 구동 특성을 갖기 때문에 High Switching, High Power에 적용이 가능한 소자이다. 반면에, Conventional IGBT는 MOSFET과 달리 IGBT 내부에 Anti-Parallel Diode가 없기 때문에 Inductive Load Application 적용시에는 별도의 Free Wheeling Diode가 필요하다. 그래서, 본 논문에서 별도의 Anti-Parallel Diode의 추가 없이도 Inductive Load Application에 적용 가능한 RC IGBT를 적용하여 600V/15A급 Three Phase Inverter Module을 제안 하고자 한다.

  • PDF

A Study on Optimal Design and Electrical Characteristics of 600 V Planar Field Stop IGBT (600 V급 Planar Field Stop IGBT 최적 설계 및 전기적 특성 분석에 관한 연구)

  • Nam, Tae-Jin;Jung, Eun-Sik;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.261-265
    • /
    • 2012
  • IGBT(insulated gate bipolar transistor) is outstanding device for current conduction capabilities. IGBT design to control the large power switching device for power supply, converter, solar converter, electric home appliances, etc. like this IGBT device can be used in many places so to increase the efficiency of the various structures are coming. in this paper optimization design of planar type IGBT and planar field stop IGBT, and both devices have a comparative analysis and reflection of the electrical characteristics.

A High Efficiency DC-DC Converter Using IGBT-MOSFET Parallel Switches (IGBT-MOSFET 병렬 스위치를 이용한 고효율 직류-직류 변환기)

  • 장동렬;서영민;홍순찬;윤덕용;황용하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.152-158
    • /
    • 1999
  • Due to high power ratings and low conduction loss, the TGBT has become more attractive in switching power supplies. However, its lower turn-on and turn-off characteristics than those of MOSFET cause severe switching loss and s switching frequency limitation. This paper proposes 2.4kW. 48V. high efficiency half-bridge DC-DC converter using p paralleled TGBT-MOSFET switch concept to use the merits of TGBTs and MOSFETs. Tn parallel switches. each of I TGBT and MOSFET plays its part during on-periods and switching instants. The switching loss is analyzed by l linearized modelling and the operation of the converter are investigated by simulation results.

  • PDF

Study of the 1,200 V-Class Floating Island IGBT (1,200 V급 Floating Island IGBT의 관한 연구)

  • Kang, Ey Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.523-526
    • /
    • 2016
  • This paper was researched about 1,200 V level floating island IGBT (insulated gate bipolar transistor). Presently, 1,200 V level IGBT is used in Inverter for distributed power generation. We analyzed and compared electrical charateristics of the proposed floating island IGBT and conventional IGBT. For analyzing and comparison, we used T-CAD tool and simulated the electrical charateristics of the devices. And we extracted optimal design and process parameter of the devices. As a result of experiments, we obtained 1,456 V and 1,459 V of breakdown voltages, respectively. And we obatined 4.06 V and 4.09 V of threshold voltages, respectively. On the other hand, on-state voltage drop of floating island IGBT was 3.75 V. but on-state vlotage drop of the conventional IGBT was 4.65 V. Therefore, we almost knew that the proposed floating island IGBT was superior than the conventional IGBT in terms of power dissipation.

Simulation of Power IGBT and Transient Analysis (전력용 IGBT의 시뮬레이션과 과도 해석)

  • 서영수
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.2
    • /
    • pp.41-60
    • /
    • 1995
  • The IGBT(Insulated Gate Bipolar Transistor) is a power semiconductor device that has gained acceptance among circuit design engineers for motor drive and power converter applications. IGBT devices(International Rectifier, Proposed proposed model etc) have the best features of both power MOSFETs and power bipolar transistors, i.e., efficient voltage gate drive requirememts and high current density capability. When designing circuit and systems that utilize IGBTs or other power semiconductor devices, circuit simulations are needed to examine how the devices affect the behavior of the circuit. The interaction of the IGBT with the load circuit can be described using the device model and the state equation of the load circuit. The voltage rise rate at turn-off for inductive loads varies significantly for IGBTs with different base life times, and this rate of rise is important in determing the voltage overshoot for a given series resistor-inductor load circuit. Excessive voltage overshoot is potentially destructive, so a snubber protection circuit may be required. The protection circuit requirements are unique for the IGBT and can be examined using the model. The IGBT model in this paper is verified by comparing the results of the model with experimented results for various circuit operating conditions. The model performs well and describes experimented results accurately for the range of static and dynamic condition in which the device is intended to be operated.

  • PDF

A Study on the Power Loss Simulation of IGBT for HVDC Power Conversion System

  • Cho, Su Eog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.4_1
    • /
    • pp.411-419
    • /
    • 2021
  • In this study, IGBT_Total_Loss and DIODE_Total_Loss were used to analyze the slope of the junction temperature for each section for temperature and duty variables in order to simply calculate the junction temperature of the power semiconductor (IGBT). As a result of the calculation, IGBT_Max_Junction_Temp and DIODE_Max_Junction_Temp form a proportional relationship with temperature for each duty. This simulation data shows that the power loss of a power semiconductor is calculated in a complex manner according to the current dependence index, voltage dependence index, and temperature coefficient. By applying the slope for each condition and section, the junction temperature of the power semiconductor can be calculated simply.

A Study on Electrical Characteristics Improvement on Field Stop IGBT Using Trench Gate Structure (Trench Gate를 이용한 Field Stop IGBT의 전기적 특성 분석에 관한 연구)

  • Nam, Tae-Jin;Jung, Eun-Sik;Chung, Hun-Suk;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.266-269
    • /
    • 2012
  • The most recently IGBT (insulated gate bipolar mode transistor) devices are in the most current conduction capable devices and designed to the big switching power device. Use this number of the devices are need to high voltage and low on-state voltage drop. And then in this paper design of field stop IGBT is insert N buffer layer structure in NPT planar IGBT and optimization design of field stop IGBT and trench field stop IGBT, both devices have a comparative analysis and reflection of the electrical characteristics. As a simulation result, trench field stop IGBT is electrical characteristics better than field stop IGBT.

A Design of 2.5kV Power IGBT for High Power (2.5kV급 Power IGBT 소자의 설계 및 제작에 관한 연구)

  • Kang, Ey-Goo;Ann, Byoung-Sup;Nam, Tae-Jin;Kim, Bum-June;Lee, Young-Hon;Chung, Hun-Suk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.143-143
    • /
    • 2009
  • 본 논문은 2500V급 planar type의 NPT(Nun-Punch Through)형 IGBT설계 및 제작에 앞서 IGBT(Insulated Gate Bipolar Transistor)소자가 갖는 구조적 변수가 전기적 특성 (Breakdown Voltage, Turnoff Time, Saturation Voltage, 등)결과에 미치는 영향을 분석하여 IGBT 소자가 갖는 구조적 손실을 최적화 하는데 목표를 두었다. 최적화의 진행은 공정 시뮬레이터인 Tsuprem4와 디바이스 분석 시뮬레이터인 MEDICI를 이용하여 소자가 갖는 각각의 parameter값이 전기적 특성에 미치는 영향을 분석함으로 진행 되어졌으며, 향후 고속철 등과 같은 대용량 산업에 기여할 것으로 판단된다.

  • PDF