• Title/Summary/Keyword: Power Flow problem

Search Result 422, Processing Time 0.039 seconds

A Study on Improvement of Sound Quality of Vehicle Using the Vibrational Power Flow (진동 유동해석기법을 이용한 자동차 실내소음 저감 및 음질 개선)

  • Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.208-214
    • /
    • 2000
  • Reduction of structure-borne noise of the compartment in a car is an important task in automotive engineering. Transfer path analysis using vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow has been used for a simple isolation system or a laboratory based isolation system. It is often difficult to apply the vibrational power flow technique to the complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied to not only quantifying the relative contributions of eighteen isolators but also reducing structure-borne noise of a passenger car. According to the results, the main contributor of eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

  • PDF

Design of SPS in the Korean Power System Against Faults on 765 KV Lines

  • Park Jong-Young;Park Jong-Keun;Jang Byung-Tae
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.132-137
    • /
    • 2005
  • In Korea, the protection systems against the instability of the nation's power system are insufficient in contrast with many other countries. In addition, there have just been studies carried out on detecting power system instability, while only a few studies pertaining to protection plans against instability exist. This paper focuses on systems to protect against the instability phenomena in the Korean power system. In this paper, we survey possible contingencies in the Korean power system and suggest outline and specs of the SPS (System Protection Scheme) against faults on the 765 kV line, based on simulations. It is concluded that event-based SPS for transient stability is appropriate for the Korean power system. In the simulations, the most severe contingency on the Korean power system is the fault on 765 kV transmission lines. If one of these lines is tripped by a fault, synchronism may be lost on the power plants near this line because of heavy power flow carried by them. In addition, undervoltage in the Metropolitan region is a serious problem in this case since this region receives about half its total power flow through these lines. In order to prevent a synchronism loss, some power plants have to be rejected according to the situations in the simulations.

On Control Strategies for BTB Converters for Enhancement of Interface Flow Margins (융통전력 여유 향상을 위한 BTB 컨버터 제어 전략 수립)

  • Ohn, Sung-Min;Song, Hwa-Chang;Jang, Byong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.374-375
    • /
    • 2011
  • This paper presents a method to determine parameters of BTB (back-to-back) converters in terms of the enhancement of interface flow margins. Interface flow margin is by definition a measure of how much active power can be transferred from the external areas to the study area with the fixed load demand, and it is mainly constrained by system voltage stability. BTB converters are controllable equipments with the active power flow through them, and its DC link in fact can divide the AC systems at the location and hence can reduce the fault current level. This paper first cals margin sensitivities at the nose point of F-V curves and formulates an optimization problem to update the BTB parameters to improve the margins. This procedure is repeated performed until the required margin enhancement is achieved.

  • PDF

Load Flow Calculation Using Genetic Algorithm (유전자 알고리듬을 이용한 조류계산)

  • Kim, H.;Lee, J.;Cha, J.;Choi, J.;Kwon, S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.78-80
    • /
    • 2005
  • The load flow calculation is one of the most critical issues in electrical power systems. Generally, load flow has been calculated by Gauss-Seidel method and Newton-Raphson method but these methods have some problems such as non-convergence due to heavy load and initial value. In this paper, to overcome such problems, the power flow is calculated by genetic algorithm. At the heavy load, the solution for problem can not be obtained by the Newton-Raphson method. However, it can be solved in case of using genetic algorithm. In this paper, the strong point of this method would be demonstrated in application to an example system.

  • PDF

Design and Performance Test of Valve Operated by ER Fluids (ER 유체로 작동되는 벨브의 제작 및 성능실험)

  • 장성철;염만오
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.63-68
    • /
    • 2004
  • Recently ER fluids are put to practical use in fluid power industry field. As only with electrical signal change to the valve in which ER fluid flowing, ER fluid flow is controlled, so devepment of simple ER valves have been tried. In this case a technical problem is to check the pressure drop caused from flow rate change in valves because the pressure drop is very small. In this study ER valves are designed and manufactured, and small pressure drop induced from flow rate change is checked by pressure transducer which is made with appling strain gage. The ER valves and pressure drop check method are considered to be applied to the fluid power industry.

Economic Load Dispatch Algorithm Including Power Mismatch Equation (계통전력방정식을 고려한 경제급전 알고리즘)

  • Han, H.G.;Kim, K.J.;Choi, J.H.;Choi, I.S.;Eum, J.S.;Rhee, B.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.52-54
    • /
    • 2000
  • Almost traditional ELD(Economic Load Dispatch) is hard to apply to power system directly and also OPF(Optimal Power Flow) is not easy to solve the problem. This paper deals with the practical application of ELD with considering power equation.

  • PDF

The devlepment of a MPC controller for water level control in the steam generator of a nuclear power plant (원전 증기발생기 수위제어를 위한 MPC 제어기 개발)

  • 손덕현;한진욱;이환섭;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.359-359
    • /
    • 2000
  • Generally, level control in the steam generator of a nuclear power plant is difficulty process control, because the low power operating can lead nonminimum phase characteristics(swell and shrink phenomenon) and flow measurement are unreliable and nonlinear characteristics. This paper presents a framework for solving this problem based on the constrained linear model predictive control and introduces the design of method for the level of the controller in the entire operating power of the steam generator, and compares with conventional PI controller.

  • PDF

Energy Efficient Routing with Power Control in Sensor Networks (센서네트워크에서 전력 조절에 의한 에너지를 효율적으로 사용하는 라우팅)

  • 윤형욱;이태진
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.140-144
    • /
    • 2003
  • A sensor network consists of many low-cost, low-power, and multi-functional sensor nodes. One of most important issues in of sensor networks is to increase network lifetime, and there have been researches on the problem. In this paper, we propose a routing mechanism to prolong network lifetime, in which each node adjusts its transmission power to send data to its neighbors. We model the energy efficient routing with power control and present an algorithm to obtain the optimal flow solution for maximum network lifetime. Then, we derive an upper bound on the network lifetime for specific network topologies.

  • PDF

A Study on the Analysis of Incompressible and Looped Flow Network Using Topological Constitutive Matrix Equation (위상구성행렬식을 이용한 비압축성 순환망 형태의 유로망 해석에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Bum-Shin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.573-578
    • /
    • 2010
  • Topological matrix which reflects characteristics of network connectivity has been widely used in efficient solving for complicated flow network. Using topological matrix, one can easily define continuity at each node of flow network and make algorithm to automatically generate continuity equation of matrix form. In order to analyze flow network completely it is required to satisfy energy conservation in closed loops of flow network. Fundamental cycle retrieving algorithm based on graph theory automatically constructs energy conservation equation in closed loops. However, it is often accompanied by NP-complete problem. In addition, it always needs fundamental cycle retrieving procedure for every structural change of flow network. This paper proposes alternative mathematical method to analyze flow network without fundamental cycle retrieving algorithm. Consequently, the new mathematical method is expected to reduce solving time and prevent error occurrence by means of simplifying flow network analysis procedure.

Numerical Study of the Averaging BDFT(bidirectional flow tube) Flow Meter on the Applicability in the Fouling Condition (수치해석을 이용한 평균 양방향 유동 튜브 유량계의 파울링 환경 적용성 연구)

  • Park, JongPil;Jeong, JiHwan;Kang, KyongHo;Baek, WonPil;Yun, ByongJo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • Most of the nuclear power plants(NPPs) adopts pressure difference type flow meters such as venturi and orifice meters for the measurement of feedwater flow rates to calculate reactor thermal power. However, corrosion products in the feedwater deposits on the flow meter by fouling as operating time goes. These effects lead to severe errors in the flow indication and then determination of reactor thermal power. The averaging BDFT, which has developed by Yun et al., has a potentiality to minimize this problem thanks to its inherent measurement principle. Therefore, it is expected that the averaging BDFT can replace the venturi meter for the feedwater pipe of steam generator of NPPs. The present work compares the amplification factor, K, based on CFD calculation against the K obtained from experiments in order to confirm whether a commercial CFD code can be applicable to the evaluation of characteristic for the averaging BDFT. In addition to this, the simulations to take into account of fouling effect are also carried out by rough wall option. The results show that the averaging BDFT is a promising flow meter for the accurate measurement of flow rates in the fouling condition of the NPPs.