• Title/Summary/Keyword: Power Detection System

Search Result 1,415, Processing Time 0.028 seconds

Development of a low-cost multifunctional wireless impedance sensor node

  • Min, Jiyoung;Park, Seunghee;Yun, Chung-Bang;Song, Byunghun
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.689-709
    • /
    • 2010
  • In this paper, a low cost, low power but multifunctional wireless sensor node is presented for the impedance-based SHM using piezoelectric sensors. Firstly, a miniaturized impedance measuring chip device is utilized for low cost and low power structural excitation/sensing. Then, structural damage detection/sensor self-diagnosis algorithms are embedded on the on-board microcontroller. This sensor node uses the power harvested from the solar energy to measure and analyze the impedance data. Simultaneously it monitors temperature on the structure near the piezoelectric sensor and battery power consumption. The wireless sensor node is based on the TinyOS platform for operation, and users can take MATLAB$^{(R)}$ interface for the control of the sensor node through serial communication. In order to validate the performance of this multifunctional wireless impedance sensor node, a series of experimental studies have been carried out for detecting loose bolts and crack damages on lab-scale steel structural members as well as on real steel bridge and building structures. It has been found that the proposed sensor nodes can be effectively used for local wireless health monitoring of structural components and for constructing a low-cost and multifunctional SHM system as "place and forget" wireless sensors.

Application of time-of-flight near infrared spectroscopy to Satsuma mandarin

  • Tsuchikawa, Satoru;Ito, Satomi;Inoue, Kinuyo;Miyamoto, Kumi
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1627-1627
    • /
    • 2001
  • In this study, a newly constructed optical measurement system, whose main components were a parametric tunable laser and a near infrared photoelectric multiplier, was applied to detection of the information for the inside of Satsuma mandarin using time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects on the time resolved profile of sample diameter, sugar content, the wavelength of the laser beam, and the detection position of transmitted light were investigated in detail. The samples used were Satsuma mandarin (Citrus unshu $M^{ARC}$.) (location: Wakayama, Japan) having the diameters of 50-84 mm. The sugar content measured by a refractometer varied from 9.9 to 16.3 Brix%. Equator of sample was irradiated vertically with the pulsed laser, and transmitted output power was measured on the restricted position of the equator using the optical fiber cable. The sampling time and the number of averaging the output power were 100 ns and 100 times, respectively. The variation of the attenuance of peak maxima At, the time delay of peak maxima t and the variation of full width at half maximum w were strongly dependent on the detection position and the wavelength of the laser beam. At, t and w increased gradually as the sample diameter increased to be much absorbed and vigorously scattered. On the other hand, each optical parameter had a tendency to increase as the sugar content increased. Such behavior was remarkable when the transmitted light was detected at the side face of a sample. When we apply TOF-NIRS to detection of the information for the inside of fruit with high moisture content like Satsuma mandarin, it is very important to give attention to the difference in the scattered light within tissues and the semi-straightly propagated light. Furthermore, we tried to express the resulting phenomena by using a model samples composed of water, sucrose, and milk. The variation of the time resolved profile is strongly governed by the combination of the light absorption component, scattering medium, and refractive index.

  • PDF

Application of time-of-flight near infrared spectroscopy to Satsuma mandarin

  • Tsuchikawa, Satoru;Ito, Satomi;Inoue, Kinuyo;Miyamoto, Kumi
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1626-1626
    • /
    • 2001
  • In this study, a newly constructed optical measurement system, whose main components were a parametric tunable laser and a near infrared photoelectric multiplier, was applied to detection of the information for the inside of Satsuma mandarin using time-of-flight near infrared spectroscopy (TOF-NIRS). The combined effects on the time resolved profile of sample diameter, sugar content, the wavelength of the laser beam, and the detection position of transmitted light were investigated in detail. The samples used were Satsuma mandarin (Citrus unshu $M_{ARC}$.) (location: Wakayama, Japan) having the diameters of 50-84 mm. The sugar content measured by a refractometer varied from 9.9 to 16.3 Brix%. Equator of sample was irradiated vertically with the pulsed laser, and transmitted output power was measured on the restricted position of the equator using the optical fiber cable. The sampling time and the number of averaging the output power were 100 ns and 100 times, respectively. The variation of the attenuance of peak maxima At, the time delay of peak maxima $\Delta$t and the variation of full width at half maximum Δw were strongly dependent on the detection position and the wavelength of the laser beam. At, $\Delta$t and $\Delta$w increased gradually as the sample diameter increased to be much absorbed and vigorously scattered. On the other hand, each optical parameter had a tendency to increase as the sugar content increased. Such behavior was remarkable when the transmitted light was detected at the side face of a sample. When we apply TOF-NIRS to detection of the information for the inside of fruit with high moisture content like Satsuma mandarin, it is very important to give attention to the difference in the scattered light within tissues and the semi-straightly propagated light. Furthermore, we tried to express the resulting phenomena by using a model samples composed of water, sucrose, and milk. The variation of the time resolved profile is strongly governed by the combination of the light absorption component, scattering medium, and refractive index.

  • PDF

Kalman Filter Estimation of the Servo Valve Effective Orifice Area for a Auxiliary Power Unit (보조 동력장치용 서보밸브 유효 오리피스 면적의 칼만필터 추정)

  • Zhang, J.F.;Kim, C.T.;Jeong, H.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.4
    • /
    • pp.1-7
    • /
    • 2007
  • Flow rate is one of the important variables for precise motion control and detection of the faults and fluid loss in many hydraulic components and systems. But in many cases, it is not easy to measure it directly. The orifice area of a servo valve by which the fluid flows is one of key factors to monitor the flow rate. In this paper, we have constructed an estimation algorithm for the effective orifice area by using the model of a servo valve cylinder control system and Kalman filter algorithm. Without geometry information about the servo valve, it is shown that the effective orifice area can be estimated by using only displacement and pressure data corrupted with noise. And the effect of the biased sensor data and system parameter errors on the estimation results are discussed. The paper reveals that sensor calibration is important in accurate estimation and plausible parameter data such as oil bulk modulus and actuator volume are acceptable for the estimation without any error. The estimation algorithm can be used as an useful tool for detecting leakage, monitoring malfunction and/or degradation of the system performance.

  • PDF

Damage detection for pipeline structures using optic-based active sensing

  • Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.461-472
    • /
    • 2012
  • This study proposes an optics-based active sensing system for continuous monitoring of underground pipelines in nuclear power plants (NPPs). The proposed system generates and measures guided waves using a single laser source and optical cables. First, a tunable laser is used as a common power source for guided wave generation and sensing. This source laser beam is transmitted through an optical fiber, and the fiber is split into two. One of them is used to actuate macro fiber composite (MFC) transducers for guided wave generation, and the other optical fiber is used with fiber Bragg grating (FBG) sensors to measure guided wave responses. The MFC transducers placed along a circumferential direction of a pipe at one end generate longitudinal and flexural modes, and the corresponding responses are measured using FBG sensors instrumented in the same configuration at the other end. The generated guided waves interact with a defect, and this interaction causes changes in response signals. Then, a damage-sensitive feature is extracted from the response signals using the axi-symmetry nature of the measured pitch-catch signals. The feasibility of the proposed system has been examined through a laboratory experiment.

Capacity Analysis of an AF Relay Cooperative NOMA System Using MRC

  • Xie, Xianbin;Bi, Yan;Nie, Xi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4231-4245
    • /
    • 2020
  • Non-orthogonal multiple access (NOMA) is widely studied in both academia and industry due to its high spectral efficiency over orthogonal multiple access (OMA). To effectively improve spectrum efficiency, an amplify-and-forward (AF) cooperative NOMA system is proposed as well as a novel detection scheme is proposed, in which we first perform successive interference cancellation (SIC) twice at U1 for the two signals received from two time slots to remove interference from symbol 2, then two new signals apply max ratio combining (MRC). In addition, a closed-form upper bound approximation for the ergodic capacity of our proposed system is derived. Monte-Carlo simulations and numerical analysis illustrate that our proposed system has better ergodic capacity performance than the conventional cooperative NOMA system with decode-forward (DF) relay, the conventional cooperative NOMA system with AF relay and the proposed AF cooperative NOMA system in [16]. In addition, we can see that ergodic capacity of all NOMA cooperative systems increase with the increase of transmit SNR. Finally, simulations display that power allocation coefficients have little effect on ergodic capacity of all NOMA cooperative systems. This is due to this fact that ergodic capacity of two symbols can be complementary with changing of power allocation coefficients.

A Detection Algorithm Study of the Victim Signal for the DAA Regulation in MB-OFDM UWB System (MB-OFDM UWB 시스템에서 DAA 기술 기준 적용을 위한 피 간섭 신호 검출 방안 연구)

  • Shin, Cheol-Ho;Choi, Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1297-1307
    • /
    • 2009
  • The purpose of this paper is to propose a detection algorithm and a tracking algorithm based on silent time using MB-OFDM UWB(Multi-Band Orthogonal Frequency Division Multiplexing Ultra Wide Band) receiver in order to satisfy DAA(Detect And Avoid) regulation of Korea to permit UWB in 3.1~4.8 GHz. In DAA regulation of Korea, if UWB device receives a signal more than -80 dBm/MHz from the victim system during UWB operation, the UWB system should avoid the collision within 2 sec. In this paper, we proposed the detection algorithm to detect the victim signal received by -80 dBm/MHz for the avoidance process that changes the operating UWB frequency to other UWB frequency and the subcarrier tracking algorithm to follow up the subcarrier positions of the victim signal for the tonenulling avoidance process that decreases the TX power of subcarriers occupied by the victim signal by -70 dBm/MHz. The performance of the detection algorithm and the tracking algorithm suggested in this paper is verified in simulation results considering various conditions.

Detection of tension force reduction in a post-tensioning tendon using pulsed-eddy-current measurement

  • Kim, Ji-Min;Lee, Jun;Sohn, Hoon
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.129-139
    • /
    • 2018
  • Post-tensioning (PT) tendons are commonly used for the assembly of modularized concrete members, and tension is applied to the tendons during construction to facilitate the integrated behavior of the members. However, the tension in a PT tendon decreases over time due to steel corrosion and concrete creep, and consequently, the stress on the anchor head that secures the PT tendon also diminishes. This study proposes an automatic detection system to identify tension reduction in a PT tendon using pulsed-eddy-current (PEC) measurement. An eddy-current sensor is installed on the surface of the steel anchor head. The sensor creates a pulsed excitation to the driving coil and measures the resulting PEC response using the pick-up coil. The basic premise is that the tension reduction of a PT tendon results in stress reduction on the anchor head surface and a change in the PEC intensity measured by the pick-up coil. Thus, PEC measurement is used to detect the reduction of the anchor head stress and consequently the reduction of the PT tendon force below a certain threshold value. The advantages of the proposed PEC-based tension-reduction-detection (PTRD) system are (1) a low-cost (< $ 30), low-power (< 2 Watts) sensor, (2) a short inspection time (< 10 seconds), (3) high reliability and (4) the potential for embedded sensing. A 3.3 m long full-scale monostrand PT tendon was used to evaluate the performance of the proposed PTRD system. The PT tendon was tensioned to 180 kN using a custom universal tensile machine, and the tension was decreased to 0 kN at 20 kN intervals. At each tension, the PEC responses were measured, and tension reduction was successfully detected.

Design of a Coordinator-based Intrusion Detection System in Ubiquitous Sensor Network Environment (USN환경에서 코디네이터 기반의 침입탐지시스템 설계)

  • Kim, Hwang-Rae;Kang, Yeon-I
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.984-990
    • /
    • 2010
  • Zigbee sensor network technology to build a ubiquitous environment has an important role. However, Zigbee technology, sensing environmental information within the local area to deliver the information because it was designed for the purpose of simple tasks, Attack by a variety of technologies that could potentially compromise the network is very high. To solve this problems, many defense mechanisms are presented in a lot of papers. But, to attack the existing Zigbee various response measures for the implementation of the functionality of the sensor nodes very heavy and high expensive problem. To resolve this problems, with superior computing power Zigbee network coordinator to install, based coordinator to intrusion detection systems is proposed. Coordinator-based IDS(Intrusion Detection System) of the Zigbee network is detected attack, and present a new approach to resolve, possible applications in various fields, so in real life Zigbee technology is expected to contribute to graft.

Analysis and the measurement of the variation of electric field in air and oil using optical measuring system (광계측 시스템을 이용한 유.기중 코로나 방전의 전계변화 측정 및 비교분석)

  • Ma, Ji-Hoon;Ryu, Cheol-Hwi;Kang, Won-Jong;Chang, Yong-Moo;Koo, Ja_Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1668-1670
    • /
    • 2002
  • Since more than two decades, the conventional PD detecting systems have been employed in order to detect the partial discharges occurring inside the HV power apparatus for their diagnosis by use of different type of detection such as acoustic and UHF detection method. Regardless of their wide on-site application, a certain number of technical inconveniences have been disclosed as follows : multistage amplification. large volume, susceptible to external noise and high price. In this respect, the optical measurement techniques are widely proposed in these days in this concerned field ascribed to the following advantages : immune to external EMI noise and broad band response of the Pockels cell covering from DC to GHz. However, the reliability of several proposed techniques enabling to measure the electric field inside the large high power apparatus has not yet been well approved In this work, an optical measuring system, based on the Pockels effect, has been developed for measuring the field variation due to the corona discharges occurring in air and in oil. This system consists of He-Ne laser, single mode optical fiber, multi mode optical fiber, polarizing film, Y-cut LiNbO3 cell, photo detector, digital oscilloscope and personal computer with GPIB. For this purpose, optical probe has been specially designed and realized and put into the needle-plane electrode. Afterward, same measurement is carried out in oil. We demonstrate the characteristic of the optical measuring system and the measurement results.

  • PDF