• 제목/요약/키워드: Power Converter

검색결과 6,245건 처리시간 0.039초

Tap Level 제어 전력 변환기의 권선설계 (A winding design of Tap Level Converter)

  • 전중함;이현우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.53-55
    • /
    • 2006
  • In this paper discusses winding methode of single phase AC-DC reversible power converter The reversible power converter driven by multi Tap winding at both side switching control. It has a advantage that simple drive of main switching device. and obtain load current of good quality without filter circuit and free from noise or isolation for lower switching frequency. In this research, study on current type converter and inverter circuit that consist for possibility of AC-DC/DC-AC multi-level reversible converter.

  • PDF

LLC 공진형 컨버터를 이용한 독립제어 가능한 2 채널 LED 구동회로 (Independently-Controlled Dual-Channel LED Driver using LLC Resonant Converter)

  • 황민하;최윤;한상규
    • 전력전자학회논문지
    • /
    • 제17권2호
    • /
    • pp.142-149
    • /
    • 2012
  • The independently regulated dual-output LLC resonant converter using only one power stage and one control IC is proposed in this paper. The conventional dual-output LLC resonant converter requires the extra non-isolated DC/DC converter to obtain the tightly regulated slave output voltage, which results in the low power conversion efficiency and high production costs. On the other hand, since the proposed converter controls the master and slave output voltages by pulse width modulation(PWM) and pulse frequency modulation(PFM), it can achieve tightly regulated dual output voltages without the additional non-isolated DC/DC converter. Therefore, it features a high efficiency and low cost. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a 40W LED driver prototype are presented.

A Fuel Cell Generation System with a New Active Clamp Sepic-Flyback Converter

  • Lee, Won-Cheol;Jang, Su-Jin;Kim, Soo-Seok;Lee, Su-Won;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • 제9권1호
    • /
    • pp.26-35
    • /
    • 2009
  • A high efficiency active clamp sepic-flyback converter is presented for fuel cell generation systems. The proposed converter is a superposition of a sepic converter mode and. flyback converter mode. The output voltages of the sepic converter mode and flyback converter mode can be regulated by the same PWM technique with constant frequency. By merging the sepic and flyback topologies, they can share the transformer, power MOSFET and active clamp circuit. The result has outstanding advantages over conventional active clamp DC-DC converters: high efficiency, high power density, and component utilization. Simulation results and experimental results are presented to verify the principles of operation for the proposed converter.

넓은 입력전압 범위에서 높은 효율을 가지는 위상천이 풀브릿지 컨버터 (A High Efficiency Phase-Shifted Full-Bridge Converter with Wide Input Voltage Range)

  • 한정규;최승현;문건우
    • 전력전자학회논문지
    • /
    • 제24권1호
    • /
    • pp.66-69
    • /
    • 2019
  • This study proposes a high-efficiency phase-shifted full-bridge (PSFB) converter with a wide input voltage range. The conventional PSFB converter is a useful topology in high-power applications. This converter not only achieves the zero-voltage switching of the primary switches, but also has small RMS current in the primary side. However, because the conventional PSFB converter has large freewheeling current in the primary side when it is designed considering the hold-up time of the converter, such a converter has high conduction loss at the primary switches. To solve this problem, a new PSFB converter is proposed in this study. The experiment is implemented with an input voltage ranging from a 320 V-400 V and an output power specification of 715 W.

Hybrid Power Management System Using Fuel Cells and Batteries

  • Kim, Jae Min;Oh, Jin Seok
    • Journal of information and communication convergence engineering
    • /
    • 제14권2호
    • /
    • pp.122-128
    • /
    • 2016
  • In the future, hybrid power management systems using fuel cells (FCs) and batteries will be used as the driving power systems of ships. These systems consist of an FC, a converter, an inverter, and a battery. In general, an FC provides steady-state energy; a battery provides the dynamic energy in the start state of a ship for enabling a smooth operation, and provides or absorbs the peak or dynamic power when the load varies and the FC cannot respond immediately. The FC voltage range is very wide and depends on the load; Therefore, the FC cannot directly connect to the inverter. In this paper, we propose a power management strategy and design process involving a unidirectional converter, a bidirectional converter, and an inverter, considering the ship's operating conditions and the power conditions of the FC and the battery. The presented experimental results were verified through a simulation.

DC Rail Side Series Switch and Parallel Capacitor Snubber-Assisted Edge Resonant Soft-Switching PWM DC-DC Converter with High-Frequency Transformer Link

  • Morimoto, Keiki;Fathy, Khairy;Ogiwara, Hiroyuki;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • 제7권3호
    • /
    • pp.181-190
    • /
    • 2007
  • This paper presents a novel circuit topology of a DC bus line series switch and parallel snubbing capacitor-assisted soft-switching PWM full-bridge inverter type DC-DC power converter with a high frequency planar transformer link, which is newly developed for high performance arc welding machines in industry. The proposed DC-DC power converter circuit is based upon a voltage source-fed H type full-bridge soft-switching PWM inverter with a high frequency transformer. This DC-DC power converter has a single power semiconductor switching device in series with an input DC low side rail and loss less snubbing capacitor in parallel with the inverter bridge legs. All the active power switches in the full-bridge arms and DC bus line can achieve ZCS turn-on and ZVS turn-off transition commutation. Consequently, the total switching power losses occurred at turn-off switching transition of these power semiconductor devices; IGBTs can be reduced even in higher switching frequency bands ranging from 20 kHz to 100 kHz. The switching frequency of this DC-DC power converter using IGBT power modules can be realized at 60 kHz. It is proved experimentally by power loss analysis that the more the switching frequency increases, the more the proposed DC-DC power converter can achieve a higher control response performance and size miniaturization. The practical and inherent effectiveness of the new DC-DC converter topology proposed here is actually confirmed for low voltage and large current DC-DC power supplies (32V, 300A) for TIG arc welding applications in industry.

A High-Efficiency High-Power Step-Up Converter with Low Ripple Content

  • Kang Jeong-il;Roh Chung-Wook;Moon Gun-Woo;Youn Myung-Joong
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.708-712
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output (PI SO) dual inductor-fed push-pull converter for high-power step­up applications is proposed. This converter is operated at a constant duty cycle and employs an auxiliary circuit to control the output voltage with a phase-shift between the two modules. It features a voltage conversion characteristic which is linear to changes in the control input, and high step-up ratio with a greatly reduced switch turn-off stress resulting in a significant increase in the converter efficiency. It also shows a low ripple content and low root-mean-square (RMS) current in the output capacitor. The operational principle is analyzed and a comparative analysis with the conventional pulse-width-modulated (PWM) PISO dual inductor-fed push-pull converter is presented. A 50kHz, 800W, 350Vdc prototype with an input of 20-32Vdc has also been constructed to validate the proposed converter. The proposed converter compares favorably with the conventional counterpart and is considered well suited to high-power step-up applications.

  • PDF

A High-Power Step-up Converter with High Efficiency and Fast Control-to-Output Dynamics

  • Kang, Jeong-il;Roh, Chung-Wook;Moon, Gun-Woo;Youn, Myung-Joong
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.78-87
    • /
    • 2001
  • A new high-power step-up based on the two-module parallel-input (PISO) modular dual inductor-fed push-pull converter is proposed. The proposed converter is operated at a constant duty cycle and employs and auxiliary circuit to control the output voltage with a phase-shift between two modules. It shows a high efficiency due to the greatly reduced switch turn-off stress. It also shows a high and linear voltage conversion ratio, low current stress in the output capacitor, and fast control-to-output dynamics. The operation principles and the mathematical models of the proposed converter are presented. Features of the proposed converter are discussed in comparison with the two-module PISO modular dual inductor-fed push-pull converter. Also, experimental results from a 50kHz, 800W, 350 Vdc prototype with an input voltage range of 20-32 Vdc are provided to confirm the validity of the proposed converter. The new converter compares favorably with the conventional counterpart, and is considered well siuted to high-power step-up applications.

  • PDF

고승압비를 갖는 전압 클램프 탭인덕터 부스트 컨버터 (Voltage Clamped Tapped-Inductor Boost Converter with High Voltage Conversion Ratio)

  • 강정민;이상현;홍성수;한상규
    • 전력전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.34-40
    • /
    • 2012
  • In this paper, voltage clamped tapped-inductor boost converter with high voltage conversion ratio is proposed. The conventional tapped-inductor boost converter has a serious drawback such as high voltage stresses across all power semiconductors due to the high resonant voltage caused by the leakage inductor of tapped inductor. Therefore, the dissipative snubber is essential for absorbing this resonant voltage, which could degrade the overall power conversion efficiency. To overcome these drawbacks, the proposed converter employs a voltage clamping capacitor instead of the dissipative snubber. Therefore, the voltage stresses of all power semiconductors are not only clamped as the output voltage but the power conversion efficiency can also be considerably improved. Moreover, since the energy stored in the clamp capacitor is transferred to the output side together with the input energy, the proposed converter can achieve the higher voltage conversion ratio than the conventional tapped-inductor boost converter. Therefore, the proposed converter is expected to be well suited to various applications demanding the high efficiency and high voltage conversion ratio. To confirm the validity of the proposed circuit, the theoretical analysis and experimental results of the proposed converter are presented.

Analysis, Design and Implementation of a Soft Switching DC/DC Converter

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제13권1호
    • /
    • pp.20-30
    • /
    • 2013
  • This paper presents a soft switching DC/DC converter for high voltage application. The interleaved pulse-width modulation (PWM) scheme is used to reduce the ripple current at the output capacitor and the size of output inductors. Two converter cells are connected in series at the high voltage side to reduce the voltage stresses of the active switches. Thus, the voltage stress of each switch is clamped at one half of the input voltage. On the other hand, the output sides of two converter cells are connected in parallel to achieve the load current sharing and reduce the current stress of output inductors. In each converter cell, a half-bridge converter with the asymmetrical PWM scheme is adopted to control power switches and to regulate the output voltage at a desired voltage level. Based on the resonant behavior by the output capacitance of power switches and the transformer leakage inductance, active switches can be turned on at zero voltage switching (ZVS) during the transition interval. Thus, the switching losses of power MOSFETs are reduced. The current doubler rectifier is used at the secondary side to partially cancel ripple current. Therefore, the root-mean-square (rms) current at output capacitor is reduced. The proposed converter can be applied for high input voltage applications such as a three-phase 380V utility system. Finally, experiments based on a laboratory prototype with 960W (24V/40A) rated power are provided to demonstrate the performance of proposed converter.