• Title/Summary/Keyword: Power Control Error

Search Result 1,077, Processing Time 0.029 seconds

Parallel Control of Shunt Active Power Filters in Capacity Proportion Frequency Allocation Mode

  • Zhang, Shuquan;Dai, Ke;Xie, Bin;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.419-427
    • /
    • 2010
  • A parallel control strategy in capacity proportion frequency allocation mode for shunt active power filters (APFs) is proposed to overcome some of the difficulties in high power applications. To improve the compensation accuracy and overall system stability, an improved selective harmonic current control based on multiple synchronous rotating reference coordinates is presented in a single APF unit, which approximately implements zero steady-state error compensation. The combined decoupling strategy is proposed and theoretically analyzed to simplify selective harmonic current control. Improved selective harmonic current control forms the basis for multi-APF parallel operation. Therefore, a parallel control strategy is proposed to realize a proper optimization so that the APFs with a larger capacity compensate more harmonic current and the ones with a smaller capacity compensate less harmonic current, which is very practical for accurate harmonic current compensation and stable grid operation in high power applications. This is verified by experimental results. The total harmonic distortion (THD) is reduced from 29% to 2.7% for a typical uncontrolled rectifier load with a resistor and an inductor in a laboratory platform.

Characteristics of Precise Temperature Control of Industrial Cooler on Thermal Load (산업용 냉각기의 열부하 변화에 대응한 정밀온도제어 특성)

  • Baek, S.M.;Choi, J.H.;Byun, J.Y.;Moon, C.G.;Jeong, S.K.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.14 no.2
    • /
    • pp.34-39
    • /
    • 2010
  • Recently, technical trend for machine tools is focused on enhancement of speed and accuracy. High speedy processing causes thermal and structural deformation of objects from the machine tools. Water cooler has to be applied to machine tools to reduce the thermal negative influence with accurate temperature controlling system. Existing On-Off control type can't control temperature accurately because compressor is operated and stopped repeatedly and causes increment of power consumption and decrement of the expected life of compressor. The goal of this study is to minimize temperature error in steady state. In addition, control period of an electronic expansion valve were considered to increment of lifetime of the machine tools and quality of product with a water cooler. PI controller is designed using type of hot-gas bypass for precise control of temperature. Gain of PI is decided easily by method of critical oscillation response, excellent performance of control is shown with 4.24% overshoot and ${\pm}0.2^{\circ}C$error of steady state. Also, error range of temperature is controlled within $0.2^{\circ}C$although disturbance occurs.

Compensation of Initial Position Error and Torque Ripple in Vector Control of Two-phase Hybrid Stepping Motors (2상 하이브리드 스테핑 모터의 벡터 제어 시 초기 각 오차 및 토크 리플 보상)

  • Do-Hyun, Kim;Sang-Hoon, Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.481-488
    • /
    • 2022
  • This study proposes compensation methods for the initial position error and torque ripple in vector control of two-phase hybrid stepping motors. Stepping motors have an asymmetrical structure due to misalignment, such as the eccentricity generated by the manufacturing and assembly process. When vector control is applied using the position information measured by an incremental encoder attached to the rotor shaft of such stepping motors, the following problems occur. First, an initial position error occurs during the forced excitation process for the initial rotor position alignment. Second, torque ripple corresponding to the mechanical rotation frequency is generated. In this study, these non-ideal phenomena that occur in vector control of the stepping motor are analyzed, and compensation methods are proposed to eliminate them. The validity of the proposed initial position error and torque ripple compensation methods is verified through experiments on a two-phase hybrid stepping motor drive system.

Voltage Source Inverter Drive Using Error-compensated Pulse Width Modulation

  • Chen, Keng-Yuan;Hu, Jwu-Sheng;Lin, Jau-Nan
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.388-397
    • /
    • 2016
  • An error-compensated pulse width modulator (ECPWM) is proposed to improve the baseband harmonic performance and the switching loss of voltage source inverters (VSIs). Selecting between harmonic distortion and switching loss is a design tradeoff in the conventional space vector pulse width modulation. In this work, an accumulated difference in produced and desired phase voltages is considered to adjust the reference signal. This mechanism can compensate for the voltage error in the previous carrier period. With error compensation every half-carrier period, the proposed ECPWM allows one-half reduction in carrier frequency without scarifying baseband harmonic distortion. The proposed modulator is applied to a three-phase VSI with R-L load and a motor-speed-control system for experiments. The measured efficiency and operating temperature of switches confirm the effectiveness of the proposed scheme.

Low-Power Decimation Filter Using Approximate Processing with Control of Error in CSD Representation (CSD 표현의 오차를 이용한 Approximate Processing과 이를 이용한 저전력 Decimation Filter의 설계)

  • 양영모;김영우;김수원
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.236-239
    • /
    • 1999
  • This paper describes a low-power design of decimation filter. To reduce power consumption, an approximate processing method which controls the error in canonic signed digit(CSD) coefficients is proposed. The CSD representation reduces the number of operations by representing multiplications with add and shift operations. The proposed method further reduces the number of operations by controlling the error of CSD coefficient. Processor type architecture is used to implement the proposed method. Simulation result shows that the number of operations is reduced to 56%, 35% and 10% at each approximated filter level.

  • PDF

Performance of PN Code Tracking Loop for a DS/CDMA System with Imperfect Power Control and Shadowing

  • Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.501-504
    • /
    • 2000
  • In this paper, performance of a pseudonoise (PN) code tracking loop is analyzed and simulated for a direct-sequence/code-division multiple access ( DS/CDMA) system with imperfect power control in a multipath fading channel. A noncoherent first-order delay-locked loop (DLL) is considered as a PN code tracking loop. Power control error is modeled as a log-normally distributed random variable. From the simulation results, it is shown that for smaller discriminator offset, tracking jitter performance is improved while MTLL performance is degraded. It is shown that large power control error and heavy shadowing substantially degrade the PN tracking performance. The analysis in this paper can be applicable to design of PN code tracking loop for a DS/CDMA system.

  • PDF

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

Constant Output Power Control Methods for Variable-Load Wireless Power Transfer Systems

  • Liu, Xu;Clare, Lindsay;Yuan, Xibo;Wang, Jun;Wang, Chonglin;Li, Jianhua
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.533-546
    • /
    • 2018
  • This study proposes a comprehensive mathematical model that includes coil-system circuit and loss models for power converters in wireless power transfer (WPT) systems. The proposed model helps in understanding the performance of WPT systems in terms of coil-to-coil efficiency, overall efficiency, and output power capacity and facilitates system performance optimization. Three methods to achieve constant output power for variable-load systems are presented based on system performance analysis. An optimal method can be selected for a specific WPT system by comparing the efficiencies of the three methods calculated with the proposed model. A two-coil 1 kW WPT system is built to verify the proposed mathematical model and constant output power control methods. Experimental results show that when the load resistance varies between 5 and $25{\Omega}$, the system output power can be maintained at 1 kW with a maximum error of 6.75% and an average error of 4%. Coil-to-coil and overall efficiencies can be maintained at above 90% and 85%, respectively, with the selected optimal control method.

A Novel Utilization Method of the Predicted Current in the High Performance PI Current Controller with a Control time delay (제어 시지연이 있는 고성능 PI 전류제어기에 대한 예측전류의 적용방법)

  • Lee, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.426-430
    • /
    • 2006
  • This paper deals with a novel utilization method of the predicted current in the high performance PI current controller with a control time delay. The inevitable error of the predicted current in the linear servo drive using a permanent magnet linear synchronous motor is analyzed and a modified cross-coupling decoupling synchronous frame PI current controller is proposed in order to improve the current control response under both the control time delay and the inevitable current prediction error. Simulation and experimental results show that the proposed current controller has an improved current control performance under both the control time delay and the inevitable current prediction error in the servo drive system.

A Novel MPPT Control of PV MIC System Considering the Shaded Effect (그림자 영향을 고려한 PV MIC 시스템의 새로운 MPPT 제어)

  • Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.5
    • /
    • pp.21-33
    • /
    • 2012
  • This paper presents the new maximum power point tracking(MPPT) control of the photovoltaic(PV) module integrated converter(MIC) system considering the shadow influence. The output characteristics of the solar cell is a nonlinear and affected by a temperature, the solar radiation and influence of a shadow. Particularly, MIC system is very sensitive to the shadow influence because the capacity is very small. In order to increase an output and efficiency of the solar power generation, the maximum power point(MPP) obeying control are necessary. Conventional perturbation and observation(PO) and Incremental conductance(IC) are the method finding MPP by the continued self-excitation vibration. The MPPT control is unable to be performed by rapid output change affected by the shadow. To solve this problem, the new control algorithm of the multi-level in which the step value changes by output change is presented. In case there are the solar radiation, a temperature and shadow influence, the presented algorithm treats and compares the conventional control algorithm and output error. In addition, the validity of the algorithm is proved. through the output error response characteristics.