• Title/Summary/Keyword: Power Consumption Capacity

Search Result 363, Processing Time 0.029 seconds

A Study on Low Power Algorithm for Battery residual capacity and a Task (배터리 잔량과 태스크에 따른 저전력 알고리즘 연구)

  • Kim, Jae Jin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • In this paper, we proposed low power algorithm for battery residual capacity and a task. Algorithm the mobile devices power of the battery residual capacity for the task to perform power consumption to reduce the frequency alters. Task is different in power consumption according to kinds of in time accomplishment device to use. Adjustment of power consumption analyzes kinds of given tasks from having the minimum power consumption task to having the maximum power consumption task. Control frequency so that power consumption waste to be exposed to battery residual capacity can be happened according to the results analyzed. Experiment the frequency by adjusting power consumption a method to reduce using [7] and in the same environment power of the battery residual capacity consider the task to perform frequency were controlled. Efficiency was proved compare with the experiment results [7]. The experiments results show increment in the number of processing by 45.46% comparing with that [7] algorithm.

Calculation of Photovoltaic, ESS Optimal Capacity and Its Economic Effect Analysis by Considering University Building Power Consumption (대학건물의 전력소비패턴 분석을 통한 태양광, ESS 적정용량 산정 및 경제적 효과 분석)

  • Lee, Hye-Jin;Choi, Jeong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.207-217
    • /
    • 2018
  • Recently, the importance of energy demand management, particularly peak load control, has been increasing due to the policy changes of the Second Energy Basic Plan. Even though the installation of distributed generation systems such as Photovoltaic and energy storage systems (ESS) are encouraged, high initial installation costs make it difficult to expand their supply. In this study, the power consumption of a university building was measured in real time and the measured power consumption data was used to calculate the optimal installation capacity of the Photovoltaic and ESS, respectively. In order to calculate the optimal capacity, it is necessary to analyze the operation methods of the Photovoltaic and ESS while considering the KEPCO electricity billing system, power consumption patterns of the building, installation costs of the Photovoltaic and ESS, estimated savings on electric charges, and life time. In this study, the power consumption of the university building with a daily power consumption of approximately 200kWh and a peak power of approximately 20kW was measured per minute. An economic analysis conducted using these measured data showed that the optimal capacity was approximately 30kW for Photovoltaic and approximately 7kWh for ESS.

Electric power consumption predictive modeling of an electric propulsion ship considering the marine environment

  • Lim, Chae-og;Park, Byeong-cheol;Lee, Jae-chul;Kim, Eun Soo;Shin, Sung-chul
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.765-781
    • /
    • 2019
  • This study predicts the power consumption of an Electric Propulsion Ship (EPS) in marine environment. The EPS is driven by a propeller rotated by a propulsion motor, and the power consumption of the propeller changes by the marine environment. The propulsion motor consumes the highest percentage of the ships' total power. Therefore, it is necessary to predict the power consumption and determine the power generation capacity and the propeller capacity to design an efficient EPS. This study constructs a power estimation simulator for EPS by using a ship motion model including marine environment and an electric power consumption model. The usage factor that represents the relationship between power consumption and propulsion is applied to the simulator for power prediction. Four marine environment scenarios are set up and the power consumed by the propeller to maintain a constant ship speed according to the marine environment is predicted in each scenario.

Analysis on Particle Cleaning Capacity of Indoor Air Cleaners for Different Flow Rates Considering Energy Consumption (에너지소비를 고려한 실내공기청정기의 풍량별 입자 청정화능력 분석)

  • Han, Bangwoo;Kang, Ji-Su;Kim, Hak-Joon;Kim, Yong-Jin;Won, Hyosig
    • Particle and aerosol research
    • /
    • v.9 no.3
    • /
    • pp.139-147
    • /
    • 2013
  • The performances of indoor air cleaners including particle cleaning capacity and collection efficiency are usually tested at the condition of the maximum air flow rate of the air cleaners. However, the power consumption of the air cleaners is highly dependent on the air flow rate of the individual air cleaners. Therefore, there seems to be an optimized air flow rate for the air cleaning capacity considering power consumption. In this study, clean air delivery rate(or standard useful area as suggested room size) and power consumption have been investigated for different maximum air flow rates of 15 air cleaners and then compared those for different air flow rate modes of the individual 5 air cleaners selected from the 15 cleaners. For the maximum air flow rate conditions of 15 air cleansers, the power consumption per unit area was less related to the maximum air flow rate. However, for the different air flow rate modes of the selected 5 air cleaners, the lower power consumption per unit area was corresponding to the lower air flow rate mode of the individual air cleaners. When considering the operation time to the desired particle concentrations, there was an optimized one in the medium air flow rate modes for the individual air cleaners. Therefore, not only the maximum air flow rate but also lower air flow rates of individual air cleaners should be considered for estimating air cleaning capacity based on energy consumption per unit area.

A study on energy efficiency improvement of waste-water treatment system by freeze concentration method (동결농축법을 이용한 폐수처리시스템의 에너지 효율 향상에 관한 연구)

  • Kim, Jung-Sik;Lim, Seung-Taek;Oh, Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.467-476
    • /
    • 2013
  • Freeze concentration method has advantages of high thermodynamic efficiency, low energy consumption and purified water re-use. In this study, freeze concentration waste-water system which was designed as the small and medium sized capacity was analyzed about the rate of electric power consumption and the daily treatment capacity to suggest the direction of system development. At first, power consumption and operation time of the system with fresh water precooler or without it was calculated by computer modeling and analysis. Subsequently, the change of design treatment capacity was applied to the system with fresh water cooler. As a result, the rate of electric power consumption was higher as 0.6 Wh/kg but daily treatment capacity increased in quantity as 19 % in the system with fresh water precooler. As design treatment capacity increased, the rate of electric power consumption was lower and daily treatment capacity was larger in quantity.

Recommended Practice for a Reasonable Power Density end Analysis of Power Consumption Capacity for the year in Large-scale Buildings (대형 건물의 연간 전기에너지 사용총량 및 전력원단위 분석에 관한 연구)

  • Kim, Se-Doug;Yoo, Sang-Bong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.85-88
    • /
    • 2009
  • This paper shows a reasonable power density, that was made by the systematic and statistical way considering actual conditions, such as investigated power consumption capacity for the year and peak power, contract power for the last 5 years of each customer for 23 general customers all data obtained by AMR. In this dissertation, it is necessary to analyze the key features from the investigated data. It made an analysis of the feature parameters, such as average, standard deviation, median, maximum, minimun and load factor.

Prediction of Vehicle Fuel Consumption on a Component Basis (가솔린 차량의 각 요소별 연료소모량 예측)

  • 송해박;유정철;이종화;박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.203-210
    • /
    • 2003
  • A simulation study was carried to analyze the vehicle fuel consumption on component basis. Experiments was also carried out to identify the simulation results, under FTP-75 Hot Phase driving conditions. and arbitrary driving conditions. A good quantitative agreement was obtained. Based on the simulation, fuel energy was used in pumping loss(3.7%), electric power generation(0.7%), engine friction(12.7%), engine inertia(0.7%), torque converter loss(4.6%), drivetrain friction(0.6%), road-load(9.2%), and vehicle inertia(13.4%) under FTP-75 Hot Phase driving conditions. Using simulation program, the effects of capacity factor and idle speed on fuel consumption were estimated. A increment of capacity factor of torque converter resulted in fuel consumption improvement under FTP-75 Hot Phase driving conditions. Effect of a decrement of idle speed on fuel consumption was negligible under the identical driving conditions.

Case Studies on the Electric Power Loss Reducing Methodology for Transformer Installation in Sewage Treatment Plant (하수처리장 변압기 설치사례 연구를 통한 전력손실 저감방안)

  • Kim, Chu-Young;Choi, Chang-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.70-77
    • /
    • 2011
  • Sewage treatment plants, consuming 1,756[GWh] which is 0.53[%] of national wide electricity consumption, is one of the electricity consuming facilites. At the research of electricity consumption and power quality analysis on sewage treatment plants, average utilization of transformer was less than 40[%] because peak load was very lower than its capacity due to excess capacity. So reduction of power loss can be achieved by transformer design optimization. The achievement in this research, is to meet reduction of power loss through optimizing the capacity and to improve as high efficiency-low loss transformer while the transformer is operating.

A Study on the Low Power Algorithm consider the Battery and the Task (배터리와 태스크를 고려한 저전력 알고리듬 연구)

  • Youn, Choong-Mo;Kim, Jae-Jin
    • Journal of Digital Contents Society
    • /
    • v.15 no.3
    • /
    • pp.433-438
    • /
    • 2014
  • In this paper, we proposed the low power algorithm consider the battery and the task. The proposed algorithm setting the power consumption of unit time consider the capacity of the battery and the target time. Calculate the power consumption of all tasks. Calculate the average power consumption by the task have maximum power consumption and the task have minimum power consumption. Recalculate average power consumption consider the unit time of task. Compare calculated average power consumption and average power consumption of task. Compared results, low power algorithm processing the average power consumption less than or equal calculated power consumption of task. Low-power algorithm is greater than the average power consumption of the task to perform targeted tasks. Low-power processors and the task by dividing the power consumption of the device in large part for the low-power consumption is performed. Experiments [6] were compared with the results of the power consumption. The experimental results [6] is reduced power consumption than the efficiency of the algorithm has been demonstrated.

Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET (MANET에서 배터리 잔량과 신호세기를 동시에 고려한 Power-aware 라우팅 프로토콜)

  • Park Gun-Woo;Choi Jong-Oh;Kim Hyoung-Jin;Song Joo-Seok
    • The KIPS Transactions:PartC
    • /
    • v.13C no.2 s.105
    • /
    • pp.219-226
    • /
    • 2006
  • The shortest path is only maintained during short time because network topology changes very frequently and each mobile nodes communicate each other by depending on battery in MANET(Mobile Ad-hoc Network). So many researches that are to overcome a limitation or consider a power have executed actively by many researcher. But these protocols are considered only one side of link stability or power consumption so we can make high of stability but power consumption isn't efficient. And also we can reduce power consumption of network but the protocol can't make power consumption of balancing. For that reason we suggest RBSSPR(Residual Battery Capacity and Signal Strength Based Power-aware Routing Protocol in MANET). The RBSSPR considers residual capacity of battery and signal strength so it keeps not only a load balancing but also minimizing of power consumption. The RBSSPR is based on AODV(Ad-hoc On-demand Distance Vector Routing). We use ns-2 for simulation. This simulation result shows that RBSSPR can extense lifetime of network through distribution of traffic that is centralized into special node and reducing of power consumption.