• Title/Summary/Keyword: Power Added Efficiency

Search Result 374, Processing Time 0.028 seconds

Design of a Dual-band Class-E Power Amplifier using Metamaterial CRLH Transmission Lines (Metamaterial CRLH 전송선로를 이용한 이중대역 Class-E 전력증폭기 설계)

  • Lim, Sung-Gyu;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.9
    • /
    • pp.54-58
    • /
    • 2011
  • In this paper a dual-band Class-E power amplifier using Composite Right-/Left-Handed transmission lines and PIN diode is proposed. Dual-band operation is achieved by the frequency offset and nonlinear phase slope of CRLH TL for the matching network of power amplifiers. The proposed power amplifier has been realized by using in the input and the output matching network for high power added efficiency. PIN diode has been used to obtain the dual-band of power amplifier. The measured results show that output powers of 42.17 dBm and 41.43 dBm were obtained at 800 MHz and 1900 MHz, respectively. At this frequency, we have obtained the power-added efficiency(PAE) of 67.84 % and 65.31 % in two operation frequencies, respectively.

High Performance Ku-band 2W MMIC Power Amplifier for Satellite Communications (위성 통신 시스템 응용을 위한 우수한 성능의 Ku 대역 2W MMIC 전력증폭기)

  • Ryu, Keun-Kwan;Ahn, Ki-Burm;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2697-2702
    • /
    • 2014
  • In this paper, we demonstrated a Ku-band 2W MMIC power amplifier for satellite communication applications. The device technology used relies on $0.25{\mu}m$ GaAs pseudomorphic high electron mobility transistor (PHEMT) of Wireless Information Networking (WIN) Semiconductor foundry. The 2W MMIC power amplifier has gain of over 29 dB and saturation output power of over 33.4 dBm in the frequency range of 13.75 ~ 14.5 GHz. Power added efficiency (PAE) is a 29 %. To our knowledge, this is the highest power added efficiency reported for any commercial GaAs-based 2W MMIC power amplifier in the Ku-band.

Ultra-small Form-Factor Helix on Pad-Type Stage-Bypass WCDMA Tx Power Amplifier Using a Chip-Stacking Technique and a Multilayer Substrate

  • Yoo, Chang-Hyun;Kim, Jung-Hyun
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.327-329
    • /
    • 2010
  • A fully integrated small form-factor HBT power amplifier (PA) was developed for UMTS Tx applications. For practical use, the PA was implemented with a well configured bottom dimension, and a CMOS control IC was added to enable/disable the HBT PA. By using helix-on-pad integrated passive device output matching, a chip-stacking technique in the assembly of the CMOS IC, and embedding of the bulky inductive lines in a multilayer substrate, the module size was greatly reduced to 2 mm ${\times}$ 2.2 mm. A stage-bypass technique was used to enhance the efficiency of the PA. The PA showed a low idle current of about 20 mA and a PAE of about15% at an output power of 16 dBm, while showing good linearity over the entire operating power range.

The design of large-signal power amplifier using waveform analysis (파형 분석을 통한 대신호 전력증폭기의 설계)

  • 이승준;김병성;남상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.4
    • /
    • pp.1121-1133
    • /
    • 1998
  • In this paper, a new method is proposed for a simple andaccurate design of larage-sigal power amplifier using the output current- and volage- waveform analysis. An existing high-efficiency theory, Harmonic Loading, is modified to apply to a real device, and the notion of "actual bias point at large-signal input" is proposed. Based on the proposed theory, 2GHz band poweramplifier is implemented using HEMT device, and the implemented amplifier shows 14dBm output power, 46% drain efficienty, 38% power-added efficiency and 7.8dB gain at 2V bias voltage.

  • PDF

Modified Single-Phase SRM Drive for Low Torque Ripple and Power Factor Improvement (저토크리플 및 역률개선을 위한 수정된 단상 SRM 구동시스템)

  • An, Young-Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.975-982
    • /
    • 2007
  • The single-phase switched reluctance motor(SRM) drive requires DC source which is generally supplied through a rectifier connected with a commercial source. The rectifier is consist of a diode full bridge and a filter circuit. Usually the filter circuit uses capacitor with large value capacitance to reduce ripple component of DC power. Although the peak torque ripple of SRM is small, the short charge and discharge current of the filter capacitor draws the low power factor and system efficiency. A modified single phase SRM drive system is presented in this paper, which includes drive circuit realizing reduction of torque ripple and improvement of power factor. In the proposed drive circuit, one switching part and diode which can separate the output of AC/DC rectifier from the filter capacitor is added. Also, a upper switch of drive circuit is exchanged a diode in order to reduce power switching device. Therefore the number of power switch device is not changed, two diodes are only added in the SRM drive. To verify the proposed system, some simulation and experimental results are presented.

Comparison of Conventional DC-DC Converter and a Family of Diode-Assisted DC-DC Converter in Renewable Energy Applications

  • Zhang, Yan;Liu, Jinjun;Ma, Xiaolong;Feng, Junjie
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.203-216
    • /
    • 2014
  • In the conventional dc-dc converter, a pair of additional diode and the adjacent passive component capacitor/inductor can be added to the circuit with an X-shape connection, which generates a family of new topologies. The novel circuits, also called diode-assisted dc-dc converter, enhance the voltage boost/buck capability and have a great potential for high step-up/step-down power conversions. This paper mainly investigates and compares conventional dc-dc converter and diode-assisted dc-dc converter in wide range power conversion from the aspects of silicon devices, passive components requirements, electro-magnetic interference (EMI) and efficiency. Then, a comprehensive comparison example of a high step-up power conversion system was carried out. The two kinds of boost dc-dc converters operate under the same operation conditions. Mathematical analysis and experiment results verify that diode-assisted dc-dc converters are very promising for simultaneous high efficiency and high step-up/step-down power conversion in distributed power supply systems.

In/Output Matching Network Based on Novel Harmonic Control Circuit for Design of High-Efficiency Power Amplifier (고효율 전력증폭기 설계를 위한 새로운 고조파 조절 회로 기반의 입출력 정합 회로)

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • In this paper, a novel harmonic control circuit has been proposed for the design of high-efficiency power amplifier with Si LDMOSFET. The proposed harmonic control circuit haying the short impedances for the second- and third-harmonic components has been used to design the in/output matching network. The efficiency enhancement effect of the proposed harmonic control circuit is superior to the class-F or inverse class-F harmonic control circuit. Also, when the proposed harmonic control circuit has been adapted to the input matching network as well as the output matching network, the of ficiency enhancement effect of the proposed power amplifier has increased all the more. The measured maximum power added efficiency (PAE) of the proposed power amplifier is 82.68% at 1.71GHz band. Compared with class-F and inverse class-F amplifiers, the measured maximum PAE of the proposed power amplifier has increased in $5.08{\sim}9.91%$.

A Study of an Application Scheme for Smart Meter and Value Added Services Based on Korean Environment (한국형 스마트 전력량계 부가서비스 적용방안 연구)

  • Kim, Seok-Gon;Lee, Han-Byul;Lee, Young-Joo;Choi, Yong-Sung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.106-111
    • /
    • 2010
  • Electronic watt hour meters(WHM) for high pressure running in domestic were installed to the digital type meter and ones for low pressure are expected to complete within several years. Domestic power metering technology is being beyond a simple framework with an electronic type and is rapidly evolving to intelligent smart metering systems in conjunction with promotion of a national smart grid project. Major policy outlook of the world's major power company regarding Intelligent metering is the application of the fare structure diversification and is the improvement of level of service to customers. In addition, electric power companies should focus on the cost reduction and the improvement of management efficiency through an efficient operation of distribution facility. In this paper, we are about to make an observation of the additional services technology development trend of the overseas smart meter and to have a view of value-added services(VAS) system of smart meter suitable for the domestic environment based on the technology development of VAS utilizing electronic watt hour meter performed by recent research projects.

Design of a Two-stage Differential cascode Power Amplifier with a Temperature Compensation function of High PAE with 2.4 GHz (2.4GHz 대역폭을 갖는 온도 보상 기능 탑재 고전력부가효율의 2 단 차동 캐스코드 전력증폭기 설계 )

  • Joon Hyung Park;Jisung Jang;Howon Kim;Kang-Yoon Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.2 no.3
    • /
    • pp.6-12
    • /
    • 2024
  • This paper presents a study on a 2.4GHz differential cascode power amplifier(PA) fabricated using a 130nm CMOS process. This PA is designed for wireless power transmission applications and consists of two differential stages with custom-designed balun transformers for single-ended output. Balun transformers are utilized not only for the output stage but also for power match-ing between each stage. Additionally, a bias circuit with temperature compensation capability is added to maintain stable bias voltage in the 2.4GHz frequency band. As a result, it achieves an output power of 21.75 dBm with a power-added efficiency(PAE) of 40.9% at TT/40℃.

Design of 20 W Class-E Amplifier Including Protection for Wireless Power Transmission at ISM 13.56 MHz (보호 회로를 포함한 무선 전력 전송용 ISM 13.56 MHz 20 W Class-E 앰프 설계)

  • Nam, Min-Young;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.613-622
    • /
    • 2013
  • In this paper, an inductive clamping class-E power amplifier has been tested for wireless power transmission at ISM band, 13.56 MHz. The implemented power amplifier is designed to operate stably without destroying power transistor in wireless power transmission system which basically keeps not to align between a transmitting antenna and a receiving antenna. The power amplifier is also designed to enhance harmonic filtering characteristic. The amplifier was tested with a DC supply voltage of 28 V and input power of 25 dBm at 13.56 MHz. The test results show the output power level of 43 dBm, the difference power level between fundamental frequency and second harmonic frequency of more than 55 dBc, the dc current consumption of 830 mA, and the high power-added efficiency of 85 %. Finally, the implemented power amplifier operated normally with 830 mA DC current consumption from 28 V source when the two antennas were aligned, and the power transmission was successful. But when the two antennas were not aligned, its DC current consumption automatically decreased down to 420 mA to protect the switching transistor.