• Title/Summary/Keyword: Powders morphology

Search Result 300, Processing Time 0.026 seconds

Morphology of Barium Titanyl Oxalate Particles Produced by Homogeneous Precipitation

  • 민천규;김승원;이철
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.600-603
    • /
    • 1997
  • Spherical, submicrometer particles of barium-titanyl oxalate were homogeneously precipitated by thermal decomposition of diethyl oxalate in acidic aqueous solutions. The rates of oxalate ion generations, determined by various combinations of temperature and initial concentration of diethyl oxalate had a very important effect on the particle size distribution. Monosized, bimodal, or broad unimodal powders were obtained under certain combinations of experimental variables.

Properties of LiNiO2 Powders Prepared by Spray Pyrolysis Process (분무열분해 공정에 의해 합성된 LiNiO2 분말의 특성)

  • Ju, Seo-Hee;Kang, Yun-Chan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.4
    • /
    • pp.297-303
    • /
    • 2008
  • $LiNiO_2$ cathode powders with fine size have been synthesized by spray pyrolysis from the spray solution with citric acid and ethylene glycol. The as-prepared powders with spherical shape, porous structure and micron size turned into $LiNiO_2$ powders with micron size and regular morphology after post-treatment at $800^{\circ}C$. The initial discharge capacities of the $LiNiO_2$ powders changed from 199 to 171mAh/g when the concentrations of the citric acid and ethylene glycol added to the spray solutions were changed from 0 to 1 M. The maximum initial discharge capacity of the $LiNiO_2$ powders obtained from the spray solution with citric acid and ethylene glycol was 198 mAh/g when the lithium component added to the spray solution was 6 mol% excess of the stoichiometric amount. The discharge capacities of the fine-sized $LiNiO_2$ powders dropped from 198 to 163 mAh/g by the 30 th cycle at a current density of 0.1 C.

Synthesis of NiTi Alloy Powder by the Reaction of NiO-TiH2 Mixing Powders (NiO-TiH2 혼합분말의 반응을 이용한 NiTi 합금분말 제조)

  • Jeon, Ki Cheol;Lee, Han-Eol;Yim, Da-Mi;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.22 no.4
    • /
    • pp.266-270
    • /
    • 2015
  • The synthesis of NiTi alloy powders by hydrogen reduction and dehydrogenation process of NiO and $TiH_2$ powder mixtures is investigated. Mixtures of NiO and $TiH_2$ powders are prepared by simple mixing for 1 h or ball milling for 24 h. Simple-mixed mixture shows that fine NiO particles are homogeneously coated on the surface of $TiH_2$ powders, whereas ball milled one exhibits the morphology with mixing of fine NiO and $TiH_2$ particles. Thermogravimetric analysis in hydrogen atmosphere reveals that the NiO and $TiH_2$ phase are changed to metallic Ni and Ti in the temperature range of 260 to $290^{\circ}C$ and 553 to $639^{\circ}C$, respectively. In the simple-mixed powders by heat-up to $700^{\circ}C$, agglomerates with solid particles and solidified liquid phase are observed, and the size of agglomerates is increased at $1000^{\circ}C$. From the XRD analysis, the presence of liquid phase is explained by the formation and melting of $NiTi_2$ inter-metallic compound due to an exothermic reaction between Ni and Ti. The simple-mixed powders, heated to $1000^{\circ}C$, lead to the formation of NiTi phase but additional Ni-, Ti-rich and Ti-oxide phases. In contrast, the microstructure of ball-milled powders is characterized by the neck-grown particles, forming $Ni_3Ti$, Ti-oxide and unreacted Ni phase.

Enhancement of Lowsintering Temperature and Electromagnetic Properties of (NiCuZn)-Ferrites for Multilayer Chip Inductor by Using Ultra-fine Powders (초미세 분말합성에 의한 칩인덕터용 (NiCuZn)-Ferrites의 저온소결 및 전자기적 특성 향상)

  • 허은광;강영조;김정식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2002
  • In this study, two different (NiCuZn)-ferrite which were fabricated by using ultra-fine powders synthesized by the wet processing and conventionally commercialized powder, were investigated and compared each other in terms of the low temperature sintering and electromagnetic properties. Composition of x and w in $(Ni_{0.4-x}Cu_xZn_{0.6})_{1+w}(Fe_2O_4)_{1-w}$ were controlled as 0.2 and 0.03, respectively. The sintering temperature were $900^{\circ}C$ for ultra-fine powders by way of initial heat treatment and $1150^{\circ}C$ for commercialized powders. The (NiCuZn)-ferrite by ultra-fine powders showed love. sintering temperature than that of commercialized powders by over $200^{\circ}C$, and excellent electromagnetic properties such as the quality factor which is a important factor in the multi-layered chip inductor. In addition, characteristics of B-H hysteresis, crystallinity, microstructure and powder morphology were analyzed by a vibrating sample method(VSM), x-ray diffractometer(XRD), transmission electron microscope (TEM) and scanning electron microscope(SEM).

  • PDF

Effect of PVA Polymerization on Synthesis of YAG:Ce3+ Phosphor Powders Prepared by a Solid-liquid Hybrid Route (PVA 중합도가 고상-액상 혼합 방식에 의한 YAG:Ce3+ 형광체 분말 합성에 미치는 영향)

  • Kim, A-Reum;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.424-429
    • /
    • 2014
  • YAG:$Ce^{3+}$ phosphor powders were synthesized using $Al(OH)_3$ seeds by means of a PVA-polymer-solution route. Various types of PVA with different molecular weights (different polymerization) were used. All dried precursor gels were calcined at $500^{\circ}C$ and then heated at $1500^{\circ}C$ in a mix of nitrogen and hydrogen gases. The final powders were characterized via XRD, SEM, PSA, PL, and PKG analyses. The phosphor properties and morphologies of the synthesized powders were dependent on the PVA type. As the molecular weight of the PVA was increased, the particle size gradually decreased with agglomeration, and the luminous intensity of the phosphor increased. However, the phosphor powder prepared from the PVA exhibiting very high molecular weight, showed a 531 nm (blue) shift from the 541 nm (yellow) wavelength of the YAG:$Ce^{3+}$ phosphor. Finally, the synthesized YAG:$Ce^{3+}$ phosphor powder prepared from the PVA with 89,000 - 98,000 molecular weight showed phosphor properties similar to those of a commercial phosphor powder, but without a post-treatment process.

Optical and dielectric properties of SrMoO4 powders prepared by the combustion synthesis method

  • Vidya, S.;John, Annamma;Solomon, Sam;Thomas, J.K.
    • Advances in materials Research
    • /
    • v.1 no.3
    • /
    • pp.191-204
    • /
    • 2012
  • In this paper, we report on the obtention of nanocrystalline $SrMoO_4$ synthesized through modified combustion process. These powders were characterized by X-ray diffraction, Fourier Transform Raman and Infrared Spectroscopy. These studies reveal that the scheelite-type $SrMoO_4$ crystallizes in tetragonal structure with I41/${\alpha}$ (N#88) space group. Transmission electron microscopy image shows that the nanocrystalline $SrMoO_4$ powders have average size of 18 nm. The optical band gap determined from the UV-V is absorption spectra for the as prepared sample is 3.7 eV. These powders showed a strong green photoluminescence emission. The samples are sintered at a relatively low temperature of $850^{\circ}C$. The morphology of the sintered pellet is studied with scanning electron microscopy. The dielectric constant and loss factor values obtained at 5 MHz for a well sintered $SrMoO_4$ pellet has been found to be 9.50 and $7.5{\times}10^{-3}$ respectively. Thus nano $SrMoO_4$ is a potential candidate for low temperature co-fired ceramics and luminescent applications.

Fabrication of Carbon-coated Tin Nano-powders by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties (액중 전기선 폭발법을 이용한 비정질 탄소가 코팅된 주석 나노분말의 제조 및 전기화학적 특성)

  • Kim, Yoo-Young;Song, Ju-Suck;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.317-324
    • /
    • 2016
  • Tin is one of the most promising anode materials for next-generation lithium-ion batteries with a high energy density. However, the commercialization of tin-based anodes is still hindered due to the large volume change (over 260%) upon lithiation/delithiation cycling. To solve the problem, many efforts have been focused on enhancing structural stability of tin particles in electrodes. In this work, we synthesize tin nano-powders with an amorphous carbon layer on the surface and surroundings of the powder by electrical wire explosion in alcohol-based liquid media at room temperature. The morphology and microstructures of the powders are characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. The electrochemical properties of the powder for use as an anode material for lithium-ion battery are evaluated by cyclic voltammetry and a galvanometric discharge-charge method. It is shown that the carbon-coated tin nano-powders prepared in hexanol media exhibit a high initial charge specific capacity of 902 mAh/g and a high capacity retention of 89% after 50 cycles.

Effects of Heat Treatment on the Composition and Magnetic Properties of the Hydrothermal-Synthesized Ba-Ferrite Powder (수열합성 Ba-Ferrite분말의 조성과 자성에 미치는 열처리 효과)

  • 이승호;김중호;김태옥
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.6
    • /
    • pp.737-746
    • /
    • 1989
  • After Ba-ferrite powders synthesized hydrothermally and its heated powders were dissolved partially with HCl treatment time, the BaO/Fe2O3 mole ratio of dissolved solutions and powders were measured by AAS, also, lattice constants, particle morphology and magnetic properties in HCl treated, heated and no-heated Ba-ferrite powders were abtained by means of XRD, SEM and VSM, respectively. From above analysis results, the effect of Ba/Fe mole ration in suspension(as starting material) on the BaO/Fe2O3 composition and particle characteristics of products were investigated, and the effect of heat treatment on magnetic properties of products examined. The composition, lattice constant and crystal phase of products depend on the Ba/Fe mole ratio in suspension. Ba content in surface or outer part of Ba-ferrite powder is higher than inner and heterogeneous, and the excess Ba ions in the inner part of particle move into the outer by heating, so that the mole ratio of BaO/Fe2O3 in the more jinner approaches more to the stoichiometric composition 1 : 6. The crystallinity, coercivity and saturation magnetization of products are increased by heat treatment, and the heat-treated samples synthesized hydrothermally in lower temperature are appreciated to have better powder characteristics.

  • PDF

Optical Properties of Spherical YAG:Ce3+ Phosphor Powders Synthesized by Atmospheric Plasma Spraying Method Appling PVA Solution Route and Domestic Aluminium Oxide Seed (PVA 용액법과 국산 산화알루미늄을 적용하여 대기 플라즈마 용사법으로 합성된 구형의 YAG:Ce3+ 형광체의 발광특성)

  • Yong-Hyeon Kim;Sang-Jin Lee
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.424-430
    • /
    • 2023
  • YAG phosphor powders were fabricated by the atmospheric plasma spraying method with the spray-dried spherical YAG precursor. The YAG precursor slurry for the spray drying process was prepared by the PVA solution chemical processing utilizing a domestic easy-sintered aluminum oxide (Al2O3) powder as a seed. The homogenous and viscous slurry resulted in dense granules, not hollow or porous particles. The synthesized phosphor powders demonstrated a stable YAG phase, and excellent fluorescence properties of approximately 115% compared with commercial YAG:Ce3+ powder. The microstructure of the phosphor powder had a perfect spherical shape and an average particle size of approx imately 30 ㎛. As a result of the PKG test of the YAG phosphor powder, the synthesized phosphor powders exhibited an outstanding luminous intensity, and a peak wavelength was observed at 531 nm.

Synthesis of Hollandite Powders as a Nuclear Waste Ceramic Forms by a Solution Combustion Synthesis (연소합성법을 이용한 방사성폐기물 고화체 Hollandite 분말 합성)

  • Choong-Hwan Jung;Sooji Jung
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.385-392
    • /
    • 2023
  • A solution combustion process for the synthesis of hollandite (BaAl2Ti6O16) powders is described. SYNROC (synthetic rock) consists of four main titanate phases: perovskite, zirconolite, hollandite and rutile. Hollandite is one of the crystalline host matrices used for the disposal of high-level radioactive wastes because it immobilizes Sr and Lns elements by forming solid solutions. The solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between a nitrate and organic fuel, generates an exothermic reaction and that heat converts the precursors into their corresponding oxide products in air. The process has high energy efficiency, fast heating rates, short reaction times, and high compositional homogeneity. To confirm the combustion synthesis reaction, FT-IR analysis was conducted using glycine with a carboxyl group and an amine as fuel to observe its bonding with metal element in the nitrate. TG-DTA, X-ray diffraction analysis, SEM and EDS were performed to confirm the formed phases and morphology. Powders with an uncontrolled shape were obtained through a general oxide-route process, confirming hollandite powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using these methods.