References
- Angloher, G., Bucci, C., Cozzini, C., Feilitzsch, F., Frank, T., Hauff, D., Henry, S, Jagemann, Th., Jochum, J., Kraus, H., Majorovits, B., Ninkovie, J. and Petricca, F. (2004), "Nucl. Cresst-II: dark matter search with scintillating absorbers", Instrum. Meth. Phys. Res. A., 520(1-3), 108-111. https://doi.org/10.1016/j.nima.2003.11.254
-
Almeida, M.A.P., Cavalcante, L.S., M., Siu Li, Varela, J.A. and Longo, E. (2012), "Structural refinement and photoluminescence properties of
$MnWO_4$ nanorods obtained by microwave-hydrothermal synthesis", J. Inorg. Organomet. P., 22(1), 264-271. https://doi.org/10.1007/s10904-011-9548-9 - Basiev, T.T., Sobol, A.A., Voronko, Y.K. and Zverev, P.G. (2000), "Spontaneous raman spectroscopy of tungstate and molybdate crystals for raman lasers", Opt. Mater., 15(3), 205-216. https://doi.org/10.1016/S0925-3467(00)00037-9
- Bi, J., Cui, C.H., Lai, X., Shi, F. and Jiang, D. (2008), "Synthesis of luminescent SrMoO4 thin films by a nonreversible galvanic cell method", Mater. Res. Bull., 43(4), 743-747. https://doi.org/10.1016/j.materresbull.2007.03.021
-
Bi, J., Wu, L., Zhang, Y., Li, Z., Li, J. and Fu, X. (2009), "Solvothermal preparation, electronic structure and photocatalytic properties of PbMoO4 and
$SrMoO_4$ ", Appl. Catal. B-Environ., 91(1-2), 135-143. https://doi.org/10.1016/j.apcatb.2009.05.016 -
Cavalcante, L.S., Longo, V.M., Sczancoski, J.C., Almeida, M.A.P., Batista, A.A., Varela, J.A., Orlandi, M.O., Longo, E. and Siu Li, M. (2012), "Electronic structure, growth mechanism and photoluminescence of
$CaWO_4$ crystals", Cryst. Eng. Comm., 14(3), 853-868. https://doi.org/10.1039/c1ce05977g -
Cavalcante, L.S., Sczancoski, J.C., Tranquilin, R.L., Joya, M.R., Pizani, P.S., Varela, J.A. and Longo, E. (2008), "
$BaMoO_4$ powders processed in domestic microwave-hydrothermal: Synthesis, characterization and photoluminescence at room temperature", J. Phys. Chem. Solids, 69(11), 2674-2680. https://doi.org/10.1016/j.jpcs.2008.06.107 - Chang, I.C., Katzka, P., Jacob, J. and Estrin, S. (1996), "Programmable acousto-optic filter", IEEE Ultrason. Symp., 2, 819-825.
- Charles, M.W., Nick Jr, H. and Gregory, E.S. (1989), Physical properties of semiconductors, Prentice-Hall, Englewood Cliffs, NJ.
-
Chen, L. and Gao, Y. (2007), "Mechanisms and applications of cell electrochemical technique to prepare luminescent
$SrMoO_4$ thin films", J. Chem. Eng., 131(1-3), 181-185. https://doi.org/10.1016/j.cej.2006.12.034 - Cheng, Y., Wang, Y.S., Chen, D. and Bao, F. (2005), "Evolution of single crystalline dendrites from nanoparticles through oriented attachment", J. Phys. Chem. B., 109(2), 794-798. https://doi.org/10.1021/jp0460240
- Choi, E.J. and Huh, Y.D. (2010), "Morphological evolution of SrMoO4 crystals from wires to notched spheres through oriented attachment", B. Kor. Chem. Soc., 31(1), 196-198. https://doi.org/10.5012/bkcs.2010.31.01.196
- Christofilos, D., Kourouklis, G.A. and Ves, S. (1995), "A high pressure raman study of calcium molybdate", J. Phys. Chem. Solids., 56(8), 1125-1129. https://doi.org/10.1016/0022-3697(95)00034-8
-
Geun-Kyu Choi, Jeong-Ryeol Kim, Sung-Hun Yoon and Kug-Sun Hong (2007), "Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn)
$AMoO_4$ compounds", J. Eur. Ceram. Soc., 27(8-9), 3063-3067. https://doi.org/10.1016/j.jeurceramsoc.2006.11.037 -
Harris, S.E. and Nieh, S.T.K. (1970), "
$CaMo0_4$ electronically tunable. optical filter", Appl. Phys. Lett., 17, 223-225. https://doi.org/10.1063/1.1653374 - Ishii, M. and Kobayashi, M. (1991), "Single crystals for radiation detectors", Prog. Cryst. Growth Ch., 23, 245-311.
- Jia, G.H., Tu, C.Y., You, Z.Y., Li, J.F., Zhu, Z.J., Wang, Y. and Wu, B.C. (2004), "Czochralski technique growth of pure and rare-earth-doped SrWO4 crystals", J. Cryst. Growth., 273(1-2), 220-225. https://doi.org/10.1016/j.jcrysgro.2004.07.095
-
Lei, H., Zhu, X., Sun, Y. and Song, W. (2008), "Preparation of
$SrMoO_4$ thin films on Si substrates by chemical solution deposition", J. Cryst. Growth., 310(4), 789-793. https://doi.org/10.1016/j.jcrysgro.2007.11.154 -
Marques, A.P.A., de Melo, D.M.A., Longo, E., Paskocimas, C.A., Pizani, P.S. and Leite, E.R. (2005), "Photoluminescence properties of
$BaMoO_4$ amorphous thin films", J. Solid. State Chem., 178(7), 2346-2353. https://doi.org/10.1016/j.jssc.2005.05.024 -
Marques, A.P.A., De Melo, D.M.A., Paskocimas, C.A., Pizani, P.S., Joya, M.R., Leite, E.R. and Longo, E. (2006), "Photoluminescent
$BaMoO_4$ nanopowders prepared by complex polymerization method (CPM)", J. Solid. State. Chem., 179(3), 671-678. https://doi.org/10.1016/j.jssc.2005.11.020 -
Marques, V.S., Cavalcante, L.S., Sczancoski, J.C., Alcantara, A.F.P., Orlandi, M.O., Moraes, E., Longo, E., Varela, J.A., Siu, Li M. and Santos, M.R.M.C. (2010), "Effect of different solvent ratios (water/ethylene glycol) on the growth process of
$CaMoO_4$ crystals and their optical properties", Cryst. Growth Des., 10(11), 4752-4768. https://doi.org/10.1021/cg100584b - Paski, E.F. and Blades, M.W. (1988), "Analysis of inorganic powders by time-wavelength resolved luminescence spectroscopy", Anal. Chem., 60(11), 1224-1230. https://doi.org/10.1021/ac00162a025
-
Ryu, J.H., Yoon, J.W., Lim, C.S., Oh, W.C. and Shim, K.B. (2005), "Microwave-assisted synthesis of
$CaMoO_4$ nano-powders by a citrate complex method and its photoluminescence property", J. Alloy Compd., 390(1-2), 245-249. https://doi.org/10.1016/j.jallcom.2004.07.064 -
Sabharwal, S., Sangeeta, C. and Desai, D.G. (2006), "Investigations of single crystal growth of
$PbMoO_4$ ", Cryst. Growth Des., 6(1), 58-62. https://doi.org/10.1021/cg0495678 -
Santos, M.A., Picon, F.C., Alves, C.N., Pizani, P.S., Varela, J.A. and Longo, E. (2011), "The role of short-range disorder in
$BaWO_4$ crystals in the intense green photoluminescence", J. Phys. Chem. C, 115(24), 12180-12186. https://doi.org/10.1021/jp2009622 -
Sczancoski, J.C., Bomio, M.D.R., Cavalcante, L.S., Joya, M.R., Pizani, P.S., Varela, J.A., Longo, E., Siu Li, M. and Andres, J.A. (2009), "Morphology and blue photoluminescence emission of
$PbMoO_4$ processed in conventional hydrothermal", J. Phys. Chem. C., 113(14), 5812-5822. https://doi.org/10.1021/jp810294q -
Sczancoski, J.C., Cavalcante, L.S., Joya, M.R., Espinosa, J.W.M., Pizani, P.S., Varela, J.A. and Longo, E. (2009), "Synthesis, growth process and photoluminescence properties of
$SrWO_4$ powders", J. Colloid Interf. Sci., 330(1), 227-236. https://doi.org/10.1016/j.jcis.2008.10.034 -
Sczancoski, J.C., Cavalcante, L.S., Joya, M.R., Varela, J.A., Pizani, P.S. and Longo, E. (2008), "
$SrMoO_4$ powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties", Chem. Eng. J., 140(1-3), 632-637. https://doi.org/10.1016/j.cej.2008.01.015 -
Sczancoski, J.C., Cavalcante, L.S., Marana, N.L., da Silva, R.O., Tranquilin, R.L., Joya, M.R., Pizani, P.S., Varela, J.A., Sambrano, J.R., Siu Li, M., Longo, E. and Andrése, J. (2010), "Electronic structure and optical properties of
$BaMoO_4$ powders", Curr. Appl. Phys., 10(2), 614-624. https://doi.org/10.1016/j.cap.2009.08.006 - Streifer, W. and Saltz, P. (1973), "Transient analysis of an electronically tunable dye laser - 2. Analytic study", IEEE J. Quantum Elect., 9(6), 563-569. https://doi.org/10.1109/JQE.1973.1077549
-
Sun, Y., Li, C., Wang, L., Ma, X., Zhang, Z., Song, M. and Ma, P. (2011), "Synthesis of
$SrMoO_4$ microstructures by the microwave radiation-assisted chelating agent method", Cryst. Res. Technol., 46(9), 973-978. - Tauc, J. (1968), "Optical properties and electronic structure of amorphous Ge and Si", Mater. Res. Bull., 3(1), 37-46. https://doi.org/10.1016/0025-5408(68)90023-8
-
Thomas, J.K., Padma Kumar, H., Solomon, S., Mathai, K.C. and Koshy, J. (2010), "Nanocrystalline
$SrHfO_4$ synthesized through a single step auto-igniting combustion technique and its characterization", J. Alloy. Compd., 508(2), 532-535. https://doi.org/10.1016/j.jallcom.2010.08.112 -
Thongtem, T., Kungwankunakorn, S., Kuntalue, B., Phuruangrat, A. and Thongtem, S. (2010), "Luminescence and absorbance of highly crystalline
$CaMoO_4$ ,$SrMoO_4$ ,$CaWO_4$ and$SrWO_4$ nanoparticles synthesized by coprecipitation method at room temperature", J. Alloy. Compd., 506(1), 475-481. https://doi.org/10.1016/j.jallcom.2010.07.033 -
Thongtem, T., Phuruangrat, A. and Thongtem, S. (2008), "Characterization of
$MMoO_4$ (M = Ba, Sr and Ca) with different morphologies prepared using a cyclic microwave radiation", Mater. Lett., 62(3), 454 457. - Vidya, S., Rejith, P., John, A., Solomon, S., Deepa, A.S. and Thomas, J.K. (2011), "Electrical, optical and vibrational characteristics of nano structured yttrium barium stannous oxide synthesized through a modified combustion method", Mater. Res. Bull., 46(10), 1723-1728. https://doi.org/10.1016/j.materresbull.2011.05.034
-
Xing, G., Li, Y., Li, Y., Wu, Z., Sun, P., Wang, Y., Zhao, C. and Wu, G. (2011), "Morphologycontrollable synthesis of
$SrMoO_4$ hierarchical crystallites via a simple precipitation method", Mater. chem. Phys., 127(3), 465-470. https://doi.org/10.1016/j.matchemphys.2011.02.034 -
Yang, P., Yao, G.Q. and Lin, J.H. (2004), "Photoluminescence and combustion synthesis of
$CaMoO_4$ doped with Pb2+ Inorg", Chem. Commun., 7(3), 389-391. -
Yu, H., Li, Z., Lee, A.J., Li, J., Zhang, H., Wang, J., Pask, H.M., Piper, J.A. and Jiang, M. (2011), "A continuous wave
$SrMoO_4$ Raman laser", Opt. Lett., 36(4), 579-581. https://doi.org/10.1364/OL.36.000579 -
Zeng, H.C. (1997), "Correlation of
$PbMoO_4$ crystal imperfections to Czochralski growth process", J. Cryst. Growth., 171(3-4), 136-145. https://doi.org/10.1016/S0022-0248(96)00465-4 -
Zhang, Y., Yang, F., Yang, J., Tang, Y. and Yuan, P. (2005), "Synthesis of crystalline
$SrMoO_4$ nanowires from polyoxometalates", Solid. State. Commun., 133(12), 759-763. https://doi.org/10.1016/j.ssc.2005.01.016 -
Zverev, P.G. (2004), "Vibronic relaxation of raman modes in
$CaMoO_4$ and$PbMoO_4$ molecular ionic crystals", Phys. Status Solidi C., 1(11), 3101-3105. https://doi.org/10.1002/pssc.200405413
Cited by
- High temperature selective sensing of hydrogen with MgO-modified SrMoO 4 micro-fibers vol.249, 2017, https://doi.org/10.1016/j.snb.2017.04.034
- Molybdenum and tungsten oxide based gas sensors for high temperature detection of environmentally hazardous sulfur species vol.237, 2016, https://doi.org/10.1016/j.snb.2016.06.071
- Electrical and optical properties of nano-crystalline RE-Ti-Nb-O 6 (RE = Dy, Er, Gd, Yb) synthesized through a modified combustion method vol.5, pp.2, 2017, https://doi.org/10.1016/j.jascer.2017.03.008
- Single step combustion synthesis of nanocrystalline scheelite Ba0.5Sr0.5MoO4 for optical and LTCC applications: Its structural, optical and dielectric properties vol.36, pp.1, 2012, https://doi.org/10.1007/s10832-016-0028-z
- Solution combustion synthesis of SrMoO4 nanophosphor using different molybdenum sources and study of its photocatalytic properties vol.6, pp.10, 2019, https://doi.org/10.1088/2053-1591/ab39ec
- Urbach Rule and Estimation of the Energy Gap Width in Molybdates vol.62, pp.8, 2020, https://doi.org/10.1134/s1063783420080144
- Effect of High Pressure on the Dielectric Properties of SrMoO4 vol.124, pp.33, 2012, https://doi.org/10.1021/acs.jpcc.0c04627
- Matching conflicting oxidation conditions and strain accommodation in perovskite epitaxial thin-film ferroelectric varactors vol.128, pp.21, 2012, https://doi.org/10.1063/5.0021097