DOI QR코드

DOI QR Code

Optical and dielectric properties of SrMoO4 powders prepared by the combustion synthesis method

  • Vidya, S. (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College) ;
  • John, Annamma (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College) ;
  • Solomon, Sam (Dielectric Materials Research Laboratory, Department of Physics, St. John's College) ;
  • Thomas, J.K. (Electronic Materials Research Laboratory, Department of Physics, Mar Ivanios College)
  • Received : 2012.05.08
  • Accepted : 2012.07.22
  • Published : 2012.09.25

Abstract

In this paper, we report on the obtention of nanocrystalline $SrMoO_4$ synthesized through modified combustion process. These powders were characterized by X-ray diffraction, Fourier Transform Raman and Infrared Spectroscopy. These studies reveal that the scheelite-type $SrMoO_4$ crystallizes in tetragonal structure with I41/${\alpha}$ (N#88) space group. Transmission electron microscopy image shows that the nanocrystalline $SrMoO_4$ powders have average size of 18 nm. The optical band gap determined from the UV-V is absorption spectra for the as prepared sample is 3.7 eV. These powders showed a strong green photoluminescence emission. The samples are sintered at a relatively low temperature of $850^{\circ}C$. The morphology of the sintered pellet is studied with scanning electron microscopy. The dielectric constant and loss factor values obtained at 5 MHz for a well sintered $SrMoO_4$ pellet has been found to be 9.50 and $7.5{\times}10^{-3}$ respectively. Thus nano $SrMoO_4$ is a potential candidate for low temperature co-fired ceramics and luminescent applications.

Keywords

References

  1. Angloher, G., Bucci, C., Cozzini, C., Feilitzsch, F., Frank, T., Hauff, D., Henry, S, Jagemann, Th., Jochum, J., Kraus, H., Majorovits, B., Ninkovie, J. and Petricca, F. (2004), "Nucl. Cresst-II: dark matter search with scintillating absorbers", Instrum. Meth. Phys. Res. A., 520(1-3), 108-111. https://doi.org/10.1016/j.nima.2003.11.254
  2. Almeida, M.A.P., Cavalcante, L.S., M., Siu Li, Varela, J.A. and Longo, E. (2012), "Structural refinement and photoluminescence properties of $MnWO_4$ nanorods obtained by microwave-hydrothermal synthesis", J. Inorg. Organomet. P., 22(1), 264-271. https://doi.org/10.1007/s10904-011-9548-9
  3. Basiev, T.T., Sobol, A.A., Voronko, Y.K. and Zverev, P.G. (2000), "Spontaneous raman spectroscopy of tungstate and molybdate crystals for raman lasers", Opt. Mater., 15(3), 205-216. https://doi.org/10.1016/S0925-3467(00)00037-9
  4. Bi, J., Cui, C.H., Lai, X., Shi, F. and Jiang, D. (2008), "Synthesis of luminescent SrMoO4 thin films by a nonreversible galvanic cell method", Mater. Res. Bull., 43(4), 743-747. https://doi.org/10.1016/j.materresbull.2007.03.021
  5. Bi, J., Wu, L., Zhang, Y., Li, Z., Li, J. and Fu, X. (2009), "Solvothermal preparation, electronic structure and photocatalytic properties of PbMoO4 and $SrMoO_4$", Appl. Catal. B-Environ., 91(1-2), 135-143. https://doi.org/10.1016/j.apcatb.2009.05.016
  6. Cavalcante, L.S., Longo, V.M., Sczancoski, J.C., Almeida, M.A.P., Batista, A.A., Varela, J.A., Orlandi, M.O., Longo, E. and Siu Li, M. (2012), "Electronic structure, growth mechanism and photoluminescence of $CaWO_4$ crystals", Cryst. Eng. Comm., 14(3), 853-868. https://doi.org/10.1039/c1ce05977g
  7. Cavalcante, L.S., Sczancoski, J.C., Tranquilin, R.L., Joya, M.R., Pizani, P.S., Varela, J.A. and Longo, E. (2008), "$BaMoO_4$ powders processed in domestic microwave-hydrothermal: Synthesis, characterization and photoluminescence at room temperature", J. Phys. Chem. Solids, 69(11), 2674-2680. https://doi.org/10.1016/j.jpcs.2008.06.107
  8. Chang, I.C., Katzka, P., Jacob, J. and Estrin, S. (1996), "Programmable acousto-optic filter", IEEE Ultrason. Symp., 2, 819-825.
  9. Charles, M.W., Nick Jr, H. and Gregory, E.S. (1989), Physical properties of semiconductors, Prentice-Hall, Englewood Cliffs, NJ.
  10. Chen, L. and Gao, Y. (2007), "Mechanisms and applications of cell electrochemical technique to prepare luminescent $SrMoO_4$ thin films", J. Chem. Eng., 131(1-3), 181-185. https://doi.org/10.1016/j.cej.2006.12.034
  11. Cheng, Y., Wang, Y.S., Chen, D. and Bao, F. (2005), "Evolution of single crystalline dendrites from nanoparticles through oriented attachment", J. Phys. Chem. B., 109(2), 794-798. https://doi.org/10.1021/jp0460240
  12. Choi, E.J. and Huh, Y.D. (2010), "Morphological evolution of SrMoO4 crystals from wires to notched spheres through oriented attachment", B. Kor. Chem. Soc., 31(1), 196-198. https://doi.org/10.5012/bkcs.2010.31.01.196
  13. Christofilos, D., Kourouklis, G.A. and Ves, S. (1995), "A high pressure raman study of calcium molybdate", J. Phys. Chem. Solids., 56(8), 1125-1129. https://doi.org/10.1016/0022-3697(95)00034-8
  14. Geun-Kyu Choi, Jeong-Ryeol Kim, Sung-Hun Yoon and Kug-Sun Hong (2007), "Microwave dielectric properties of scheelite (A = Ca, Sr, Ba) and wolframite (A = Mg, Zn, Mn) $AMoO_4$ compounds", J. Eur. Ceram. Soc., 27(8-9), 3063-3067. https://doi.org/10.1016/j.jeurceramsoc.2006.11.037
  15. Harris, S.E. and Nieh, S.T.K. (1970), "$CaMo0_4$ electronically tunable. optical filter", Appl. Phys. Lett., 17, 223-225. https://doi.org/10.1063/1.1653374
  16. Ishii, M. and Kobayashi, M. (1991), "Single crystals for radiation detectors", Prog. Cryst. Growth Ch., 23, 245-311.
  17. Jia, G.H., Tu, C.Y., You, Z.Y., Li, J.F., Zhu, Z.J., Wang, Y. and Wu, B.C. (2004), "Czochralski technique growth of pure and rare-earth-doped SrWO4 crystals", J. Cryst. Growth., 273(1-2), 220-225. https://doi.org/10.1016/j.jcrysgro.2004.07.095
  18. Lei, H., Zhu, X., Sun, Y. and Song, W. (2008), "Preparation of $SrMoO_4$ thin films on Si substrates by chemical solution deposition", J. Cryst. Growth., 310(4), 789-793. https://doi.org/10.1016/j.jcrysgro.2007.11.154
  19. Marques, A.P.A., de Melo, D.M.A., Longo, E., Paskocimas, C.A., Pizani, P.S. and Leite, E.R. (2005), "Photoluminescence properties of $BaMoO_4$ amorphous thin films", J. Solid. State Chem., 178(7), 2346-2353. https://doi.org/10.1016/j.jssc.2005.05.024
  20. Marques, A.P.A., De Melo, D.M.A., Paskocimas, C.A., Pizani, P.S., Joya, M.R., Leite, E.R. and Longo, E. (2006), "Photoluminescent $BaMoO_4$ nanopowders prepared by complex polymerization method (CPM)", J. Solid. State. Chem., 179(3), 671-678. https://doi.org/10.1016/j.jssc.2005.11.020
  21. Marques, V.S., Cavalcante, L.S., Sczancoski, J.C., Alcantara, A.F.P., Orlandi, M.O., Moraes, E., Longo, E., Varela, J.A., Siu, Li M. and Santos, M.R.M.C. (2010), "Effect of different solvent ratios (water/ethylene glycol) on the growth process of $CaMoO_4$ crystals and their optical properties", Cryst. Growth Des., 10(11), 4752-4768. https://doi.org/10.1021/cg100584b
  22. Paski, E.F. and Blades, M.W. (1988), "Analysis of inorganic powders by time-wavelength resolved luminescence spectroscopy", Anal. Chem., 60(11), 1224-1230. https://doi.org/10.1021/ac00162a025
  23. Ryu, J.H., Yoon, J.W., Lim, C.S., Oh, W.C. and Shim, K.B. (2005), "Microwave-assisted synthesis of $CaMoO_4$ nano-powders by a citrate complex method and its photoluminescence property", J. Alloy Compd., 390(1-2), 245-249. https://doi.org/10.1016/j.jallcom.2004.07.064
  24. Sabharwal, S., Sangeeta, C. and Desai, D.G. (2006), "Investigations of single crystal growth of $PbMoO_4$", Cryst. Growth Des., 6(1), 58-62. https://doi.org/10.1021/cg0495678
  25. Santos, M.A., Picon, F.C., Alves, C.N., Pizani, P.S., Varela, J.A. and Longo, E. (2011), "The role of short-range disorder in $BaWO_4$ crystals in the intense green photoluminescence", J. Phys. Chem. C, 115(24), 12180-12186. https://doi.org/10.1021/jp2009622
  26. Sczancoski, J.C., Bomio, M.D.R., Cavalcante, L.S., Joya, M.R., Pizani, P.S., Varela, J.A., Longo, E., Siu Li, M. and Andres, J.A. (2009), "Morphology and blue photoluminescence emission of $PbMoO_4$ processed in conventional hydrothermal", J. Phys. Chem. C., 113(14), 5812-5822. https://doi.org/10.1021/jp810294q
  27. Sczancoski, J.C., Cavalcante, L.S., Joya, M.R., Espinosa, J.W.M., Pizani, P.S., Varela, J.A. and Longo, E. (2009), "Synthesis, growth process and photoluminescence properties of $SrWO_4$ powders", J. Colloid Interf. Sci., 330(1), 227-236. https://doi.org/10.1016/j.jcis.2008.10.034
  28. Sczancoski, J.C., Cavalcante, L.S., Joya, M.R., Varela, J.A., Pizani, P.S. and Longo, E. (2008), "$SrMoO_4$ powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties", Chem. Eng. J., 140(1-3), 632-637. https://doi.org/10.1016/j.cej.2008.01.015
  29. Sczancoski, J.C., Cavalcante, L.S., Marana, N.L., da Silva, R.O., Tranquilin, R.L., Joya, M.R., Pizani, P.S., Varela, J.A., Sambrano, J.R., Siu Li, M., Longo, E. and Andrése, J. (2010), "Electronic structure and optical properties of $BaMoO_4$ powders", Curr. Appl. Phys., 10(2), 614-624. https://doi.org/10.1016/j.cap.2009.08.006
  30. Streifer, W. and Saltz, P. (1973), "Transient analysis of an electronically tunable dye laser - 2. Analytic study", IEEE J. Quantum Elect., 9(6), 563-569. https://doi.org/10.1109/JQE.1973.1077549
  31. Sun, Y., Li, C., Wang, L., Ma, X., Zhang, Z., Song, M. and Ma, P. (2011), "Synthesis of $SrMoO_4$ microstructures by the microwave radiation-assisted chelating agent method", Cryst. Res. Technol., 46(9), 973-978.
  32. Tauc, J. (1968), "Optical properties and electronic structure of amorphous Ge and Si", Mater. Res. Bull., 3(1), 37-46. https://doi.org/10.1016/0025-5408(68)90023-8
  33. Thomas, J.K., Padma Kumar, H., Solomon, S., Mathai, K.C. and Koshy, J. (2010), "Nanocrystalline $SrHfO_4$ synthesized through a single step auto-igniting combustion technique and its characterization", J. Alloy. Compd., 508(2), 532-535. https://doi.org/10.1016/j.jallcom.2010.08.112
  34. Thongtem, T., Kungwankunakorn, S., Kuntalue, B., Phuruangrat, A. and Thongtem, S. (2010), "Luminescence and absorbance of highly crystalline $CaMoO_4$, $SrMoO_4$, $CaWO_4$ and $SrWO_4$ nanoparticles synthesized by coprecipitation method at room temperature", J. Alloy. Compd., 506(1), 475-481. https://doi.org/10.1016/j.jallcom.2010.07.033
  35. Thongtem, T., Phuruangrat, A. and Thongtem, S. (2008), "Characterization of $MMoO_4$ (M = Ba, Sr and Ca) with different morphologies prepared using a cyclic microwave radiation", Mater. Lett., 62(3), 454 457.
  36. Vidya, S., Rejith, P., John, A., Solomon, S., Deepa, A.S. and Thomas, J.K. (2011), "Electrical, optical and vibrational characteristics of nano structured yttrium barium stannous oxide synthesized through a modified combustion method", Mater. Res. Bull., 46(10), 1723-1728. https://doi.org/10.1016/j.materresbull.2011.05.034
  37. Xing, G., Li, Y., Li, Y., Wu, Z., Sun, P., Wang, Y., Zhao, C. and Wu, G. (2011), "Morphologycontrollable synthesis of $SrMoO_4$ hierarchical crystallites via a simple precipitation method", Mater. chem. Phys., 127(3), 465-470. https://doi.org/10.1016/j.matchemphys.2011.02.034
  38. Yang, P., Yao, G.Q. and Lin, J.H. (2004), "Photoluminescence and combustion synthesis of $CaMoO_4$ doped with Pb2+ Inorg", Chem. Commun., 7(3), 389-391.
  39. Yu, H., Li, Z., Lee, A.J., Li, J., Zhang, H., Wang, J., Pask, H.M., Piper, J.A. and Jiang, M. (2011), "A continuous wave $SrMoO_4$ Raman laser", Opt. Lett., 36(4), 579-581. https://doi.org/10.1364/OL.36.000579
  40. Zeng, H.C. (1997), "Correlation of $PbMoO_4$ crystal imperfections to Czochralski growth process", J. Cryst. Growth., 171(3-4), 136-145. https://doi.org/10.1016/S0022-0248(96)00465-4
  41. Zhang, Y., Yang, F., Yang, J., Tang, Y. and Yuan, P. (2005), "Synthesis of crystalline $SrMoO_4$ nanowires from polyoxometalates", Solid. State. Commun., 133(12), 759-763. https://doi.org/10.1016/j.ssc.2005.01.016
  42. Zverev, P.G. (2004), "Vibronic relaxation of raman modes in $CaMoO_4$ and $PbMoO_4$ molecular ionic crystals", Phys. Status Solidi C., 1(11), 3101-3105. https://doi.org/10.1002/pssc.200405413

Cited by

  1. High temperature selective sensing of hydrogen with MgO-modified SrMoO 4 micro-fibers vol.249, 2017, https://doi.org/10.1016/j.snb.2017.04.034
  2. Molybdenum and tungsten oxide based gas sensors for high temperature detection of environmentally hazardous sulfur species vol.237, 2016, https://doi.org/10.1016/j.snb.2016.06.071
  3. Electrical and optical properties of nano-crystalline RE-Ti-Nb-O 6 (RE = Dy, Er, Gd, Yb) synthesized through a modified combustion method vol.5, pp.2, 2017, https://doi.org/10.1016/j.jascer.2017.03.008
  4. Single step combustion synthesis of nanocrystalline scheelite Ba0.5Sr0.5MoO4 for optical and LTCC applications: Its structural, optical and dielectric properties vol.36, pp.1, 2012, https://doi.org/10.1007/s10832-016-0028-z
  5. Solution combustion synthesis of SrMoO4 nanophosphor using different molybdenum sources and study of its photocatalytic properties vol.6, pp.10, 2019, https://doi.org/10.1088/2053-1591/ab39ec
  6. Urbach Rule and Estimation of the Energy Gap Width in Molybdates vol.62, pp.8, 2020, https://doi.org/10.1134/s1063783420080144
  7. Effect of High Pressure on the Dielectric Properties of SrMoO4 vol.124, pp.33, 2012, https://doi.org/10.1021/acs.jpcc.0c04627
  8. Matching conflicting oxidation conditions and strain accommodation in perovskite epitaxial thin-film ferroelectric varactors vol.128, pp.21, 2012, https://doi.org/10.1063/5.0021097