• 제목/요약/키워드: Powder bed fusion

검색결과 52건 처리시간 0.026초

Influence of Surface Roughness on Friction and Wear Characteristics of SUS 321 for Hydraulic Cylinder Parts Application

  • Sung-Jun Lee;Yonghun Jang;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • 제39권6호
    • /
    • pp.244-249
    • /
    • 2023
  • This paper presents a comprehensive analysis of the impact of surface roughness on the friction and wear properties of SUS 321, an austenitic stainless steel variant produced using the laser powder bed fusion (LPBF) technique, which is a prevalent additive manufacturing method. After the LPBF fabrication, the specimens go a heat treatment process aimed at alleviating residual stress. Subsequently, they are polished extensively to achieve a refined and smooth surface. To deliberately introduce controlled variations in surface roughness, an etching process is employed. This multi-step method encompassed primary etching in a 3M hydrochloric acid solution, followed by secondary etching in a 35 wt% ferric chloride solution, with varying durations applied to different specimens. A comprehensive evaluation of the surface characteristics ensued, employing precise techniques such as surface roughness measurements and meticulous assessments of water droplet contact angles. Following the surface treatment procedures, a series of friction tests are performed to explore the tribological behavior of the etched specimens. This in-depth investigation reached its peak by revealing valuable insights. It clarified a strong correlation between intentionally altered surface roughness, achieved through etching processes, and the resulting tribological performance of LPBF-fabricated SUS 321 stainless steel. This significantly advances our grasp of material behavior in tribological applications.

L-PBF 공정으로 제조된 Fe-15Cr-7Ni-3Mn 합금의 상온 및 극저온(77K) 기계적 특성 (Mechanical Properties of the Laser-powder Bed Fusion Processed Fe-15Cr-7Ni-3Mn Alloy at Room and Cryogenic Temperatures)

  • 박준영;노건우;김정기
    • 소성∙가공
    • /
    • 제33권1호
    • /
    • pp.36-42
    • /
    • 2024
  • Additive manufacturing with 3XX austenitic stainless steels has been widely investigated during a decade due to its high strength, good corrosion resistance, and fair weldability. However, in recently, Ni price drastically increased due to the high demand of secondary battery for electric mobilities. Thus, it is essential to substitute the Ni with Mn for reducing stainless steels price. Meanwhile, the chemical composition changes in stainless steels not only affect to its properties but also change the optimal processing parameters during additive manufacturing. Therefore, it is necessary to optimize the processing parameters of each alloy for obtaining high-quality product using additive manufacturing. After processing optimization, mechanical properties and microstructure of the laser-powder bed fusion processed Fe-15Cr-7Ni-3Mn alloy were investigated in both room (298 K) and cryogenic (77 K) temperatures. Since the temperature reduction affects to the deformation mechanism transition, multi-scale microstructural characterization technique was conducted to reveal the deformation mechanism of each sample.

LPBF 공정으로 제조된 Ti-6Al-4V 합금의 밀도와 표면 거칠기 제어를 위한 매개변수 연구 (Parametric Study of Selective Laser Melting Using Ti-6Al-4V Powder Bed for Concurrent Control of Volumetric Density and Surface Roughness)

  • 우정민;김지윤;손용호;이기안
    • 한국분말재료학회지
    • /
    • 제28권5호
    • /
    • pp.410-416
    • /
    • 2021
  • Ti-6Al-4V alloy has a wide range of applications, ranging from turbine blades that require smooth surfaces for aerodynamic purposes to biomedical implants, where a certain surface roughness promotes biomedical compatibility. Therefore, it would be advantageous if the high volumetric density is maintained while controlling the surface roughness during the LPBF of Ti-6Al-4V. In this study, the volumetric energy density is varied by independently changing the laser power and scan speed to document the changes in the relative sample density and surface roughness. The results where the energy density is similar but the process parameters are different are compared. For comparable energy density but higher laser power and scan speed, the relative density remained similar at approximately 99%. However, the surface roughness varies, and the maximum increase rate is approximately 172%. To investigate the cause of the increased surface roughness, a nonlinear finite element heat transfer analysis is performed to compare the maximum temperature, cooling rate, and lifetime of the melt pool with different process parameters.

금속 3D 프린팅 공정 최적화를 통한 H13 공구강 조형체의 기계적 특성 향상 (Mechanical Property Improvement of the H13 Tool Steel Sculptures Built by Metal 3D Printing Process via Optimum Conditions)

  • 윤재철;최중호;이행나;김기봉;양상선;양동열;김용진;이창우;유지훈
    • 한국분말재료학회지
    • /
    • 제24권3호
    • /
    • pp.195-201
    • /
    • 2017
  • In this study, H13 tool steel sculptures are built by a metal 3D printing process at various laser scan speeds. The properties of commercial H13 tool steel powders are confirmed for the metal 3D printing process used: powder bed fusion (PBF), which is a selective laser melting (SLM) process. Commercial H13 powder has an excellent flowability of 16.68 s/50 g with a Hausner ratio of 1.25 and a density of $7.68g/cm^3$. The sculptures are built with dimensions of $10{\times}10{\times}10mm^3$ in size using commercial H13 tool steel powder. The density measured by the Archimedes method is $7.64g/cm^3$, similar to the powder density of $7.68g/cm^3$. The hardness is measured by Rockwell hardness equipment 5 times to obtain a mean value of 54.28 HRC. The optimum process conditions in order to build the sculptures are a laser power of 90 W, a layer thickness of $25{\mu}m$, an overlap of 30%, and a laser scan speed of 200 mm/s.

적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성 (Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.

RF 플라즈마 처리를 이용한 칠보 유약 분말의 구상화 및 적층 제조 공정 적용 (Spheroidization of Enamel Powders by Radio Frequency Plasma Treatment and Application to Additive Manufacturing)

  • 김기봉;양동열;김용진;최중호;곽지나;정우형
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.388-393
    • /
    • 2020
  • The enamel powders used traditionally in Korea are produced by a ball-milling process. Because of their irregular shapes, enamel powders exhibit poor flowability. Therefore, polygonal enamel powders are only used for handmade cloisonné crafts. In order to industrialize or automate the process of cloisonné crafts, it is essential to control the size and shape of the powder. In this study, the flowability of the enamel powders was improved using the spheroidization process, which employs the RF plasma treatment. In addition, a simple grid structure and logo were successfully produced using the additive manufacturing process (powder bed fusion), which utilizes spherical enamel powders. The additive manufacturing technology of spherical enamel powders is expected to be widely used in the field of cloisonné crafting in the future.

전자빔을 이용한 Stellite21 분말 예열공정에 관한 기초 연구 (Preliminary Study on Pre-Heating Process of Stellite21 Powder Using Electron Beam)

  • 이호진;송재국;김진석;안동규
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.419-425
    • /
    • 2016
  • A powder spreading phenomenon is one of disadvantageous characteristics of the powder bed fusion process using electron beams. The powder spreading phenomenon can be controlled using a pre-heating process of metallic powders. The aim of this paper was to investigate the preheating process of Stellite21 powder using electron beams. Powder spreading experiments were performed to examine the influence of process parameters on the spreading behaviors of Stellite21 powder. Powder heating experiments were carried to investigate the effects of the focusing current of the electron beam on the quality of the heated region. Using the results of the powder spreading and heating experiments, an appropriate combination of process parameters was obtained. The pre-heating experiment of Stellite21 was performed using the estimated combination of process parameters. The results of preheating experiments showed that the preheated Stelllite21 layer with desired characteristics can be created when the estimated combination of process parameters is applied.

레이저로 적층 제조한 금속 기지재 복합재료의 설계 및 제조 연구동향 (Selective Laser Melting of Metal Matrix Composites: A Review of Materials and Process Design)

  • 김민겸;김태환;김주원;김동원;방영젠;노종환;서종환
    • Composites Research
    • /
    • 제34권4호
    • /
    • pp.212-225
    • /
    • 2021
  • 금속 기지재 복합재료들(MMCs, Metal matrix composites)은 우수한 기계적 물성(강성, 강도, 마모 저항성, 경도 등)과 뛰어난 특성(열전도, 전기전도도, 부식 저항 등)으로 다양한 산업군에 활용되고 있다. 적층제조 기술이 발달함에 따라 복잡한 형상을 시간과 비용을 절약하여 제조할 수 있다는 이점으로, 적층 제조한 MMCs에 관한 연구가 활발하게 이루어지고 있다. 하지만 MMCs를 적층 제조할 경우, 다양한 원인들에 의해 여러 문제들이 발생할 수 있다. 따라서 본 연구에서는 다양한 MMCs의 특징들을 소개하고, 위의 문제들이 발생하는 원인을 고찰하여 소재와 Powder bed fusion (PBF) 공정 설계 관점에서 해결책을 제시하고자 한다. 본 논문은 향후 PBF 방식으로 적층 제조한 MMCs를 개발할 때 설계 및 제조 가이드라인을 제시하여 줄 수 있을 것이다.

응력제거 열처리 공정조건이 적층제조한 Ti-6Al-4V 합금의 잔류응력 및 경도에 미치는 영향 (Effect of stress relief heat treatment on the residual stress and hardness of additively manufactured Ti-6Al-4V alloy)

  • 송영환
    • 한국결정성장학회지
    • /
    • 제33권6호
    • /
    • pp.282-287
    • /
    • 2023
  • 본 연구에서는 Laser Powder bed fusion(L-PBF) 공정을 사용하여 제작된 Ti-6Al-4V 합금 적층성형품의 응력제거 열처리 온도와 시간의 변화에 따른 미세조직, 잔류응력 그리고 경도의 변화를 연구하였다. 잔류응력 제거를 위한 열처리 시험 결과 823 K에서는 240분, 873K에서는 60분 이상 열처리시 치수변화 및 기계적 특성 저하를 야기하는 결정립 성장 및 상변화 발생 없이 대부분의 잔류응력이 3 0 MPa 이하로 감소되는 것을 확인하였다. 또한, 열처리 온도 및 시간의 증가와 함께 경도가 증가하는 경향을 보였다. 이러한 결과는 XRD 및 SEM-EBDS의 phase map 분석을 통해 확인되지 않지만, 773~873 K 온도범위에서 등온 열처리시 국부적인 침상 Martensitic α' 상의 미세화가 원인으로 추정된다.

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • 제8권1호
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.