DOI QR코드

DOI QR Code

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun (Department of Mechanical & Aerospace Engineering, Seoul National University) ;
  • Yun, Gun Jin (Institute of Advanced Aerospace Technology, Seoul National University)
  • Received : 2020.08.28
  • Accepted : 2020.10.23
  • Published : 2021.01.25

Abstract

Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

Keywords

Acknowledgement

This work was supported by the Korea Evaluation Institute of Industrial Technology (KEIT) grant funded by the Korea government (MOTIE) (No.20004662, Industrial Technology Innovation Program) and Institute of Engineering Research at Seoul National University. The authors are grateful for their supports.

References

  1. Abaqus, V. (2014), 6.14 Documentation, Dassault Systemes Simulia Corporation, 651, 6.2.
  2. Ansari, M.J., Nguyen, D.S. and Park, H.S. (2019), "Investigation of SLM process in terms of temperature distribution and melting pool size: Modeling and experimental approaches", Materials, 12(8), 1272. https://doi.org/10.3390/ma12081272.
  3. Boivineau, M., Cagran, C., Doytier, D., Eyraud, V., Nadal, M.H., Wilthan, B. and Pottlacher, G. (2006), "Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy", Int. J. Thermophys., 27(2), 507-529. https://doi.org/10.1007/PL00021868.
  4. Boyer, R.R. (1996), "An overview on the use of titanium in the aerospace industry", Mater. Sci. Eng. A, 213(1-2), 103-114. https://doi.org/10.1016/0921-5093(96)10233-1.
  5. Bruna-Rosso, C., Demir, A.G. and Previtali, B. (2018), "Selective laser melting finite element modeling: Validation with high-speed imaging and lack of fusion defects prediction", Mater. Des., 156, 143-153. https://doi.org/10.1016/j.matdes.2018.06.037.
  6. Buchbinder, D., Meiners, W., Pirch, N., Wissenbach, K. and Schrage, J. (2014), "Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting", J. Laser Appl., 26(1), 012004. https://doi.org/10.2351/1.4828755.
  7. Cam, G. and Kocak, M. (1998), "Progress in joining of advanced materials", Int. Mater. Rev., 43(1), 1-44. https://doi.org/10.1179/imr.1998.43.1.1.
  8. Chen, C., Yin, J., Zhu, H., Xiao, Z., Zhang, L. and Zeng, X. (2019b), "Effect of overlap rate and pattern on residual stress in selective laser melting", Int. J. Mach. Tool. Manu., 145, 103433. https://doi.org/10.1016/j.ijmachtools.2019.103433.
  9. Chen, Q., Liang, X., Hayduke, D., Liu, J., Cheng, L., Oskin, J., Whitmore, R. and To, A.C. (2019a), "An inherent strain based multiscale modeling framework for simulating part-scale residual deformation for direct metal laser sintering", Additive Manuf., 28, 406-418. https://doi.org/10.1016/j.addma.2019.05.021.
  10. Ciurana, J., Hernandez, L. and Delgado, J. (2013), "Energy density analysis on single tracks formed by selective laser melting with CoCrMo powder material", Int. J. Adv. Manuf. Tech., 68(5-8), 1103-1110. https://doi.org/10.1007/s00170-013-4902-4.
  11. Das, M., Balla, V. K., Basu, D., Bose, S. and Bandyopadhyay, A. (2010), "Laser processing of SiC-particlereinforced coating on titanium", Scripta Materialia, 63(4), 438-441. https://doi.org/10.1016/j.scriptamat.2010.04.044.
  12. Dausinger, F. and Shen, J. (1993), "Energy coupling efficiency in laser surface treatment", ISIJ Int., 33(9), 925-933. https://doi.org/10.2355/isijinternational.33.925.
  13. Del Bello, U., Rivela, C., Cantello, M. and Penasa, M. (1991), "Energy balance in high-power CO2 laser welding", Proceedings of the Industrial and Scientific Uses of High-Power Lasers, Hague, The Netherlands, March.
  14. Dilip, J.J.S., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D. and Stucker, B. (2017), "Influence of processing parameters on the evolution of melt pool, porosity, and microstructures in Ti-6Al-4V alloy parts fabricated by selective laser melting", Prog. Addit. Manuf., 2(3), 157-167. https://doi.org/10.1007/s40964-017-0030-2.
  15. Fabbro, R. (2010), "Melt pool and keyhole behaviour analysis for deep penetration laser welding", J. Phys. D Appl. Phys., 43(44), 445501. https://doi.org/10.1088/0022-3727/43/44/445501.
  16. Fan, Z. and Liou, F. (2012), Numerical Modeling of the Additive Manufacturing (AM) Processes of Titanium Alloy, in Titanium Alloys-Towards Achieving Enhanced Properties for Diversified Applications, 3-28.
  17. Fu, C.H. and Guo, Y.B. (2014), "Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V", J. Manuf. Sci. Eng., 136(6), 061004. https://doi.org/10.1115/1.4028539.
  18. Fukuhara, M. and Sanpei, A. (1993), "Elastic moduli and internal frictions of Inconel 718 and Ti-6Al-4V as a function of temperature", J. Mater. Sci. Lett., 12(14), 1122-1124. https://doi.org/10.1007/BF00420541.
  19. Gan, M.X. and Wong, C.H. (2016), "Practical support structures for selective laser melting", J. Mater. Process. Tech., 238, 474-484. https://doi.org/10.1016/j.jmatprotec.2016.08.006.
  20. Gu, D.D., Meiners, W., Wissenbach, K. and Poprawe, R. (2012), "Laser additive manufacturing of metallic components: Materials, processes and mechanisms", Int. Mater. Rev., 57(3), 133-164. https://doi.org/10.1179/1743280411Y.0000000014.
  21. Gu, D., Wang, H. and Zhang, G. (2014), "Selective laser melting additive manufacturing of Ti-based nanocomposites: The role of nanopowder", Metall. Mater. Trans. A, 45(1), 464-476. https://doi.org/10.1007/s11661-013-1968-4.
  22. Han, Q., Geng, Y., Setchi, R., Lacan, F., Gu, D. and Evans, S.L. (2017), "Macro and nanoscale wear behaviour of Al-Al2O3 nanocomposites fabricated by selective laser melting", Compos. Part B Eng., 127, 26-35. https://doi.org/10.1016/j.compositesb.2017.06.026.
  23. Herzog, D., Seyda, V., Wycisk, E. and Emmelmann, C. (2016), "Additive manufacturing of metals", Acta Materialia, 117, 371-392. https://doi.org/10.1016/j.actamat.2016.07.019.
  24. Hu, Z., Zhu, H., Zhang, C., Zhang, H., Qi, T. and Zeng, X. (2018), "Contact angle evolution during selective laser melting", Mater. Des., 139, 304-313. https://doi.org/10.1016/j.matdes.2017.11.002.
  25. Hussein, A., Hao, L., Yan, C. and Everson, R. (2013), "Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting", Mater. Des. (1980-2015), 52, 638-647. https://doi.org/10.1016/j.matdes.2013.05.070.
  26. Kaci, D. A., Madani, K., Mokhtari, M., Feaugas, X. and Touzain, S. (2017), "Impact of composite patch on the J-integral in adhesive layer for repaired aluminum plate", Adv. Aircraft Spacecraft Sci., 4(6), 679-699. http://doi.org/10.12989/aas.2017.4.6.679.
  27. Kamara, A. M., Wang, W., Marimuthu, S. and Li, L. (2011), "Modelling of the melt pool geometry in the laser deposition of nickel alloys using the anisotropic enhanced thermal conductivity approach", Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 225(1), 87-99. https://doi.org/10.1177%2F09544054JEM2129. https://doi.org/10.1177%2F09544054JEM2129
  28. Kruth, J. P., Froyen, L., Van Vaerenbergh, J., Mercelis, P., Rombouts, M. and Lauwers, B. (2004), "Selective laser melting of iron-based powder", J. Mater. Process. Tech., 149(1-3), 616-622. https://doi.org/10.1016/j.jmatprotec.2003.11.051.
  29. Lampa, C., Kaplan, A.F., Powell, J. and Magnusson, C. (1997), "An analytical thermodynamic model of laser welding", J. Phys. D Appl. Phys., 30(9), 1293. https://doi.org/10.1088/0022-3727/30/9/004.
  30. Lee, K.H. and Yun, G.J. (2020a), "A novel heat source model for analysis of melt pool evolution in selective laser melting process", Additive Manuf., 36, 101497. https://doi.org/10.1016/j.addma.2020.101497.
  31. Lee, K.H. and Yun, G.J. (2020b), "Prediction of melt pool dimension and residual stress evolution with thermodynamically-consistent phase field and consolidation models during re-melting process of SLM", Comput. Mater. Continua, 66(1), 87-112. http://doi.org/10.32604/cmc.2020.012688.
  32. Leung, C.L.A., Marussi, S., Atwood, R.C., Towrie, M., Withers, P.J. and Lee, P.D. (2018), "In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing", Nature Commun., 9(1), 1-9. https://doi.org/10.1038/s41467-018-03734-7.
  33. Li, C., Liu, J.F., Fang, X.Y. and Guo, Y.B. (2017), "Efficient predictive model of part distortion and residual stress in selective laser melting", Additive Manuf., 17, 157-168. https://doi.org/10.1016/j.addma.2017.08.014.
  34. Liang, X., Cheng, L., Chen, Q., Yang, Q. and To, A.C. (2018), "A modified method for estimating inherent strains from detailed process simulation for fast residual distortion prediction of single-walled structures fabricated by directed energy deposition", Additive Manuf., 23, 471-486. https://doi.org/10.1016/j.addma.2018.08.029.
  35. Liu, S., Zhu, H., Peng, G., Yin, J. and Zeng, X. (2018), "Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis", Mater. Des., 142, 319-328. https://doi.org/10.1016/j.matdes.2018.01.022.
  36. Mercelis, P. and Kruth, J.P. (2006), "Residual stresses in selective laser sintering and selective laser melting", Rapid Prototyping J., 12(5), 254-265. https://doi.org/10.1108/13552540610707013.
  37. Mills, K.C. (2002), Recommended Values of Thermophysical Properties for Selected Commercial Alloys, Woodhead Publishing.
  38. Queva, A., Guillemot, G., Moriconi, C., Metton, C. and Bellet, M. (2020), "Numerical study of the impact of vaporisation on melt pool dynamics in Laser Powder Bed Fusion-Application to IN718 and Ti-6Al-4V", Additive Manuf., 35, 101249. https://doi.org/10.1016/j.addma.2020.101249.
  39. Rangaswamy, P., Prime, M.B., Daymond, M., Bourke, M.A.M., Clausen, B., Choo, H. and Jayaraman, N. (1999), "Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti-6Al-4V) matrix composite", Mater. Sci. Eng. A, 259(2), 209-219. https://doi.org/10.1016/S0921-5093(98)00893-4.
  40. Roberts, I.A. (2012), "Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing", Ph.D. Dissertation, University of Wolverhampton, Wolverhampton, England, U.K.
  41. Roy, S., Juha, M., Shephard, M.S. and Maniatty, A.M. (2018), "Heat transfer model and finite element formulation for simulation of selective laser melting", Comput. Mech., 62(3), 273-284. https://doi.org/10.1007/s00466-017-1496-y.
  42. Seifter, A., Pottlacher, G., Jager, H., Groboth, G. and Kaschnitz, E. (1998), "Measurements of thermophysical properties of solid and liquid Fe-Ni alloys", Berichte der Bunsengesellschaft fur physikalische Chemie, 102(9), 1266-1271. https://doi.org/10.1002/bbpc.19981020934.
  43. Shi, W., Liu, Y., Shi, X., Hou, Y., Wang, P. and Song, G. (2018), "Beam diameter dependence of performance in thick-layer and high-power selective laser melting of Ti-6Al-4V", Materials, 11(7), 1237. https://doi.org/10.3390/ma11071237.
  44. Shrestha, S., Starr, T. and Chou, K. (2019), "A study of keyhole porosity in selective laser melting: singletrack scanning with micro-CT analysis", J. Manuf. Sci. E., 141(7). https://doi.org/10.1115/1.4043622.
  45. Singh, P., Pungotra, H. and Kalsi, N.S. (2017), "On the characteristics of titanium alloys for the aircraft applications", Mater. Today Proc., 4(8), 8971-8982. https://doi.org/10.1016/j.matpr.2017.07.249.
  46. Trapp, J., Rubenchik, A.M., Guss, G. and Matthews, M.J. (2017), "In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing", Appl. Mater. Today, 9, 341-349. https://doi.org/10.1016/j.apmt.2017.08.006.
  47. Vanderhasten, M., Rabet, L. and Verlinden, B. (2008), "Ti-6Al-4V: Deformation map and modelisation of tensile behaviour", Mater. Des., 29(6), 1090-1098. https://doi.org/10.1016/j.matdes.2007.06.005.
  48. Vastola, G., Zhang, G., Pei, Q.X. and Zhang, Y.W. (2016), "Controlling of residual stress in additive manufacturing of Ti6Al4V by finite element modeling", Additive Manuf., 12, 231-239. https://doi.org/10.1016/j.addma.2016.05.010.
  49. Verhaeghe, F., Craeghs, T., Heulens, J. and Pandelaers, L. (2009), "A pragmatic model for selective laser melting with evaporation", Acta Materialia, 57(20), 6006-6012. https://doi.org/10.1016/j.actamat.2009.08.027.
  50. Wang, S.L., Sekerka, R.F., Wheeler, A.A., Murray, B.T., Coriell, S.R., Braun, R. and McFadden, G. B. (1993), "Thermodynamically-consistent phase-field models for solidification", Physica D Nonlin. Phenom., 69(1-2), 189-200. https://doi.org/10.1016/0167-2789(93)90189-8.
  51. Welsch, G., Boyer, R. and Collings, E.W. (1993), Materials Properties Handbook: Titanium Alloys, ASM International.
  52. Yadroitsev, I., Gusarov, A., Yadroitsava, I. and Smurov, I. (2010), "Single track formation in selective laser melting of metal powders", J. Mater. Process. Tech., 210(12), 1624-1631. https://doi.org/10.1016/j.jmatprotec.2010.05.010.
  53. Yap, C.Y., Chua, C.K., Dong, Z.L., Liu, Z.H., Zhang, D.Q., Loh, L.E. and Sing, S.L. (2015), "Review of selective laser melting: Materials and applications", Appl. Phys. Rev., 2(4), 041101. https://doi.org/10.1063/1.4935926.
  54. Zhang, Z., Huang, Y., Kasinathan, A.R., Shahabad, S.I., Ali, U., Mahmoodkhani, Y. and Toyserkani, E. (2019), "3-Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat sources based on varied thermal conductivity and absorptivity", Opt. Laser Technol., 109, 297-312. https://doi.org/10.1016/j.optlastec.2018.08.012.
  55. Zhao, C., Fezzaa, K., Cunningham, R.W., Wen, H., De Carlo, F., Chen, L., Rollett, A.D. and Sun, T. (2017), "Real-time monitoring of laser powder bed fusion process using high-speed X-ray imaging and diffraction", Sci. Reports, 7(1), 1-11. https://doi.org/10.1038/s41598-017-03761-2.