• Title/Summary/Keyword: Powder Flow

Search Result 611, Processing Time 0.026 seconds

Influence of Replacement Ratio of Wasted Refractory Aggregate on the Properties of Mortar using Blast Furnace Slag and Recycled Aggregate (폐내화물 골재 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향)

  • Song, Yuan-Lou;Moon, Byeong-Yong;Kim, Min-Sang;Lee, Jea-Hyeon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.139-140
    • /
    • 2016
  • In this research, the possibility of wasted refractory aggregate pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory aggregate was replaced 2%.

  • PDF

Particle Size and Shape Analysis : The Key to Success in Metal Powder Production

  • Pankewitz, Axel;Park, Yong-Jae
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.702-703
    • /
    • 2006
  • The particle size distribution and shape are among the important parameters for characterisation of quality of metal powders. Specific material properties such as ability to flow, reactivity as well as compressibility and its hardening potentials hence the most important characteristics of sintered metals - are determined by the size distribution and shape. The correct particle size distribution and particle shape information are the key to best product quality in atomisation processes of aluminium, milling of pure metals and other processes. This paper presents state-of-the-art technology for characterization of particle size distribution and shape.

  • PDF

The Study on the Properties of Calcined Oyster Shell & Hwang-To Powder (황토를 혼합 소성한 굴패각 미분말의 물성에 관한 연구)

  • Jung, Joo-hyung;Park, Min-Soo;Jung, Min-Soo;Kim, Hyo-Youl;Kang, Byung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.41-44
    • /
    • 2007
  • Recently, the strenuous industrial waste is scattered and one of the oyster also make the serious environmental contamination. The purpose of this study is investigating an utilization ability as calcium binder of the oyster with Hwang-To according to a rate(10%, 20%, 30%, 40%, 50%). This study grasp physical properties of the oyster powder, bake production of the paste, and conduct the flow test, stiff time test and strength test. According to baking condition, strength of $1000^{\circ}C$(120minutes, rate 30%) is higher than any other condition. The oyster powder from above $900^{\circ}C$ seem possibility as binder hereafter. It is thought that the continuous research will be necessary.

  • PDF

Fluidity and strength characteristics of PCC(Powder Compacted Capsule) mixed mortar according to the type of coating material (코팅재 종류에 따른 PCC(Powder Compacted Capsule) 혼입 모르타르의 유동성 및 강도 특성)

  • Lee, Jae-In;Kim, Chae-Young;Park, Jeong-Yeon;Ji, Dong-Min;Kim, Sung-Hoon;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.255-256
    • /
    • 2022
  • As part of a study to alleviate problems caused by cracks in concrete structures, this study compares and analyzes the fluidity and strength characteristics of mortars used by adjusting the mixing ratio of two types of PCC(Powder Compacted Capsule) manufactured by different methods.

  • PDF

The Fludity and Compressive Strength Properties of Mortar Using Peronikel Slag Powder and Mixed Slag Aggregates (페로니켈슬래그 미분말 및 혼합슬래그 골재를 사용한 모르타르의 유동성 및 압축강도 특성)

  • Bae, Sunh-Ho;Jung, Yong-Jae;Lee, Jae-In;Kim, Ji-Hwan;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.78-79
    • /
    • 2021
  • This study compared and analyzed the fluidity and compressive strength characteristics of mortar using ferronikel slag powder and mixed slag fine aggregate as part of the study to reduce environmental load and increase recycling rate of industrial by-products.

  • PDF

Quality Characteristics of Pear Jam with Added Ginger Powder (건조 방법을 달리한 생강가루를 첨가한 배잼의 품질 특성)

  • Rho, Jeong-Ok;Park, Hee-Jin;Lee, Young-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.2
    • /
    • pp.159-165
    • /
    • 2011
  • This study was carried out to investigate the quality characteristics of pear jam containing fresh ginger(G1) and ginger powders; dried ginger powder(G2), freeze-dried ginger powder(G3), and hot-air dried ginger powder(G4). The moisture, crude protein, and crude ash content of the control group were significantly higher than those of the experimental groups (p<0.001, p<0.05, p<0.01). The pH of the dried ginger powder added jam(G2) was the lowest(p<0.05). Texture profile analysis found that the dried ginger powder added jam(G2) had the highest firmness, consistency, cohesiveness, and resistance to flow/viscosity among all samples(p<0.001). Regarding the spread-meter value of the pear jam, the control group (G1) and hot air-dried ginger powder added jam(G4) had the highest values. The dried ginger power added jam(G2) had the lowest value among the samples(p<0.01). Regarding the color values of the pear jam, the control group(G1) had the highest L and b values. Hot-air dried ginger powder added jam(G4), on the other hand, had the lowest(p<0.001). The opposite was true for a value: hot-air dried ginger powder added jam(G4) had the highest. From the sensory evaluation, a positive trend was observed for the appearance of the dried ginger powder added jam(G2)(p<0.001). For sweetness, the dried ginger powder added jam(G2) had the highest value. A positive trend was observed for the overall acceptability of the dried ginger powder-added jam(G2)(p<0.001). Therefore, the dried ginger powder-added sample(G2) seemed to be the most appropriate to make pear jam with high acceptability.

Visualization of Three-Dimensional Pulsatile Flow in a Branching Model using the High-Resolution PIV System (고해상 PIV시스템을 이용한 분지관내3차원 맥동유동 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Choi, Jin-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.765-768
    • /
    • 2003
  • The objective of the present study was to visualize the pulsatile flow field in a branching model by using the high-resolution PIV system. A bifurcated flow system was built for the experiments in the pulsatile flow. Harvard pulsatile pump was used to generate the pulsatile velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow fields. Two consecutive particle images at several cross sections of the flow filed were captured by the CCD cameras ($1K{\ast}1K$ and $640{\ast}480$). The results after the image processing clearly showed the recirculation zones and the formation of the paired secondary flows from the distal to the apex in the bifurcated model. The results also indicated that the flow velocities in the inner wall moved faster than those in the outer wall due to the inertial force effects and the helical motions generated in the branch flows as the flow proceeded toward the outer wall. While the PIV images from the $1K{\ast}1K$ camera were closer to the simulation results thantheimagesfromthe640${\ast}$480camera,bothresultsofthePIVexperimentsusingthetwocamerasgenerallyagreed quitewellwiththeresultsfromthenumericalsimulation.

  • PDF

Measurements of Transient Mixing Concentrations between Solid Powder and Liquid Fuel (고체분말/액체연료의 과도혼합 농도 분포 측정)

  • Doh, Deoghee;Yum, Jooho;Cho, Gyeongrae;Min, Seongki;Kim, Myungho;Ryu, Gyongwon;Yoo, Namhyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.678-687
    • /
    • 2012
  • Concentration fields of solid powder in a liquid fuel were quantitatively measured by a visualization technique. The measurement system consists of a camcoder and three LCD monitors. The solid powder (glass powder) were filled in a head tank which was installed over a main mixing tank ($D{\times}H$, $310{\times}370mm$). The main mixing tank was filled with JetA1 fuel oil. With a sudden opening of the upper tank by pressurized nitrogen gas with 1.9 bar, the solid powder were poured into the JetA1 oil. An impeller type agitator was being rotated in the mixing with 700 rpm for the enhancements of mixing. Uniform visualization for the mixing flow field was made by the light from the three LCD monitors, and the visualized images were captured by the camcoder. The color images captured by the camcoder The color information of the captured images was decoded into three principle colors R, G, and B to get quantitattive relations between the concentrations of the solid powder and the colors. To get better fitting for the strong non-linearity between the concentration and the color, a neural network which has strong fitting performances was used. Analyses on the transient mixing of the solid powders were quantitatively made.

Investigation on Microstructure and Flowability of Gas Atomized Heat-resistant KHR45A Alloy Powders for Additive Manufacturing

  • Geonwoo Baek;Mohsen Saboktakin Rizi;Yeeun Lee;SungJae Jo;Joo-Hyun Choi;Soon-Jik Hong
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.13-21
    • /
    • 2023
  • In additive manufacturing, the flowability of feedstock particles determines the quality of the parts that are affected by different parameters, including the chemistry and morphology of the powders and particle size distribution. In this study, the microstructures and flowabilities of gas-atomized heat-resistant alloys for additive manufacturing applications are investigated. A KHR45A alloy powder with a composition of Fe-30Cr-40Mn-1.8Nb (wt.%) is fabricated using gas atomization process. The microstructure and effect of powder chemistry and morphology on the flow behavior are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and revolution powder analysis. The results reveal the formation of spherical particles composed of single-phase FCC dendritic structures after gas atomization. SEM observations show variations in the microstructures of the powder particles with different size distributions. Elemental distribution maps, line scans, and high-resolution XPS results indicate the presence of a Si-rich oxide accompanied by Fe, Cr, and Nb metal oxides in the outer layer of the powders. The flowability behavior is found to be induced by the particle size distribution, which can be attributed to the interparticle interactions and friction of particles with different sizes.