DOI QR코드

DOI QR Code

Investigation on Microstructure and Flowability of Gas Atomized Heat-resistant KHR45A Alloy Powders for Additive Manufacturing

  • Geonwoo Baek (Division of Advanced Materials Engineering, and Center for Advanced Materials and Parts of Powders (CAMP2), Kongju National University) ;
  • Mohsen Saboktakin Rizi (Division of Advanced Materials Engineering, and Center for Advanced Materials and Parts of Powders (CAMP2), Kongju National University) ;
  • Yeeun Lee (Division of Advanced Materials Engineering, and Center for Advanced Materials and Parts of Powders (CAMP2), Kongju National University) ;
  • SungJae Jo (Division of Advanced Materials Engineering, and Center for Advanced Materials and Parts of Powders (CAMP2), Kongju National University) ;
  • Joo-Hyun Choi (Boogong Co. Ltd.) ;
  • Soon-Jik Hong (Division of Advanced Materials Engineering, and Center for Advanced Materials and Parts of Powders (CAMP2), Kongju National University)
  • Received : 2023.02.20
  • Accepted : 2023.02.23
  • Published : 2023.02.28

Abstract

In additive manufacturing, the flowability of feedstock particles determines the quality of the parts that are affected by different parameters, including the chemistry and morphology of the powders and particle size distribution. In this study, the microstructures and flowabilities of gas-atomized heat-resistant alloys for additive manufacturing applications are investigated. A KHR45A alloy powder with a composition of Fe-30Cr-40Mn-1.8Nb (wt.%) is fabricated using gas atomization process. The microstructure and effect of powder chemistry and morphology on the flow behavior are investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and revolution powder analysis. The results reveal the formation of spherical particles composed of single-phase FCC dendritic structures after gas atomization. SEM observations show variations in the microstructures of the powder particles with different size distributions. Elemental distribution maps, line scans, and high-resolution XPS results indicate the presence of a Si-rich oxide accompanied by Fe, Cr, and Nb metal oxides in the outer layer of the powders. The flowability behavior is found to be induced by the particle size distribution, which can be attributed to the interparticle interactions and friction of particles with different sizes.

Keywords

Acknowledgement

This work was supported by the Korea Institute for Advancement of Technology (KIAT), and Ministry of Trade, Industry and Energy (P0018009). This work was supported by the Technology development Program (S3211124) funded by the Ministry of SMEs and Startups (MSS, Korea).

References

  1. M. Ebrahimian, M. H. Enayati, F. Karimzadeh, Y. Min and D.-E. Kim: Mater Charact., 171 (2021) 110816.
  2. A. Delic, M. Oruc, M. Rimac, A. Kump and P. Anderson: Simulation Centrifugal Casting of the Heat Resistant Austenitic Steel HK 30 Modified by Niobium, Springer Cham, 76 (2020) 146.
  3. V. Tari, A. Najafizadeh, M. H. Aghaei and M. A. Mazloumi: Journal of Failure Analysis and Prevention., 9 (2009) 316.
  4. A. El-Batahgy and B. Zaghloul: Mater Charact., 54 (2005) 239. https://doi.org/10.1016/j.matchar.2004.12.014
  5. A. Amanov, J.-H. Choi and Y.-S. Pyun: Materials, 14 (2021) 3658.
  6. A. A. Kaya: Mater Charact., 49 (2002) 23. https://doi.org/10.1016/S1044-5803(02)00284-X
  7. L. M. Shen, J. M. Gong and H. S. Liu: Materials at High Temperatures., 31 (2014) 148. https://doi.org/10.1179/1878641313Y.0000000002
  8. H.-J. Kim, J. Park, Y.-S. Ji, B.M. Jeong, J. Nam, M.-G. Jo, J. Lee, D.-I. Kim, J.-Y. Suh and J.-H. Shim: Mater Charact., 176 (2021) 111110.
  9. Y. Lee, C. Nagarjuna, J.-W. Song, K.Y. Jeong, G. Song, J. Lee, J.-H. Lee and S.-J. Hong: Powder Metallurgy., 64 (2021) 219.
  10. G. Shin, M. Ebrahimian, N. K. Adomako, H. Choi, D. J. Lee, J.-H. Yoon, D. W. Kim, J.-Y. Kang, M. Y. Na, H. J. Chang and J. H. Kim: Mater Des., 227 (2023) 111681.
  11. W. Choo, M. Ebrahimian, K. Choi and J. H. Kim: Metals and Materials International., (2022). https://doi.org/10.1615/Int.v7.i3.10
  12. M. M. Francois, A. Sun, W. E. King and N. J. Henson: Curr Opin Solid State Mater Sci., 21 (2017) 198.
  13. M. Molitch-Hou: Addit Manuf., (2018) 1.
  14. T. Fedina, J. Sundqvist, J. Powell and A. F. H. Kaplan: Addit Manuf., 36 (2020) 101675.
  15. J. Boes, A. Rottger and W. Theisen: Addit Manuf., 34 (2020) 101379.
  16. D. Beckers, N. Ellendt and U. Fritsching: Advanced Powder Technology., 31 (2020) 300.
  17. S. Ozbilen: Powder Metallurgy., 42 (1999) 70.
  18. L.-C. Zhang, W.-Y. Xu and Z. Li: Powder Technol., 418 (2023) 118162.
  19. C. Wu, B.-J. Lee and X. Su: Calphad., 57 (2017) 98.
  20. F. Pengjun, X. Yi, L. Xinggang and C. Ya: Rare Metal Materials and Engineering., 47 (2018) 423.
  21. H. Buscail, C. Issartel and F. Riffard: Corros Sci., 65 (2012) 535.
  22. A. Barroux, T. Duguet and N. Ducommun: Surfaces and Interfaces., 22 (2021) 100874.
  23. R. Oro, M. Campos and E. Hryha: Mater Charact., 86 (2013) 80.
  24. P. Kiani, U. Scipioni Bertoli and A. D. Dupuy: Adv Eng Mater., 22 (2020) 2000022.