• Title/Summary/Keyword: Potentiostatic mode

Search Result 8, Processing Time 0.017 seconds

Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode (일정 전위 모드에서의 전기와류 불안정성에 대한 시간-분해 해석)

  • Lee, Hyomin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.2
    • /
    • pp.319-324
    • /
    • 2020
  • Electroconvective instability is a non-linear transport phenomenon which can be found in ion-selective transport system such as electrodialysis, Galvanic cell and electrolytic cell. The instability is triggered by the fluctuation of space charge layer in adjacent of ion-selective surface, leading to increase of mass transport rate. Thus, in the aspect of mass transport, the instability has an important meaning. Although recent experimental techniques have opened up an avenue to direct visualize the instability, fundamental investigations have been conducted in limited area due to several experimental limitations. In this work, the electroconvective instability under potentiostatic mode was solved by numerical method in order to demonstrate correlation between current-time curve and the instability behavior. By rigorous time-resolved analysis, the transition behaviors can be divided into three stages; formation of space charge layer - growth of electroconvective instability - steady state. Furthermore, scaling laws of transition time were numerically obtained according to applied voltage as well.

Effect of Polyaniline Film by Electro-synthesis on Corrosion Resistance of Steel Sheets in the Aqueous Solution of Sodium Chloride (NaCl 수용액내에서 강판의 내식성에 미치는 전해합성 폴리아닐린 피막의 영향)

  • Yoon, J.M.;Kim, Y.G.
    • Korean Journal of Materials Research
    • /
    • v.13 no.9
    • /
    • pp.625-630
    • /
    • 2003
  • Increasing environmental concerns require to solve the problem produced due to the use of heavy metals in coating formulations. Therefore, it is necessary to develop new coating strategy employing inherently conducting polymers such as Polyaniline(PANI). Polyaniline films were electrosynthesized by oxidation of aniline on cold rolled and weathering sheets using the potentiostatic mode from an aqueous oxalic acid medium. Potentiodynamic polarization curves were obtained for cold rolled and weathering sheets in the aqueous solution of 3% sodium chloride. The structure and properties of polyaniline film were elucidated using SEM, DSC, SST. A high corrosion resistance of polyaniline films were observed with a gain of the corrosion potential around 600-900 mV positive in the substrate covered with polyaniline than in the case without it.

Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals (오스테나이트계 스테인리스강 용착금속의 응고모드가 공식 생성 및 성장에 미치는 영향 x Effects of Solidification Modes on the Pit Initiation and Propagation in Austenitic Stainless Steel Weld Metals)

  • 최한신;김규영;이창희
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.59-68
    • /
    • 1998
  • In this study, effects of solidification modes (primary $\delta$-ferrite, primary ${\gamma}$-austenite) on the pit initiation and propagation in the 304L and 316L austenitic stainless steel weld metals were investigated. The solidification mode of weld metal was controlled by the addition of nitrogen to Ar shielding gas. Through the electrochemical experiments (potentiodynamic anodic polarization and potentiostatic time-current transient test) and metallographic examination (microstructure and elemental distribution), the following results were obtained. The more the volume content of nitrogen in the shielding gas were, the lower critical current density for passivity was observed. In comparison with weldments solidified through the primary $\delta$-ferrite solidification mode and the primary ${\gamma}$-solidification mode, the former showed higher critical pitting potential and a longer incubation time for stable pit initiation than the latter. However, in the pit propagation stage the former exhibited a faster dissolution rate than the latter. These results were believed to ee related to the distribution of alloying elements such as Cr, Mo, Ni and S.

  • PDF

A study on the steady-state and dynamic performance of polymer electrolyte fuel cells under various external humidification conditions (고분자 전해질 연료전지의 외부가습 조건에 따른 정상상태 및 비정상상태 성능특성 연구)

  • Lee, Yong-Taek;Kim, Bo-Sung;Kim, Yong-Chan;Choi, Jong-Min;Ko, Jang-Myoun
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3407-3412
    • /
    • 2007
  • The performance characteristics of the polymer electrolyte fuel cells (PEFCs) were investigated under various humidification conditions at steady-state and transient conditions. The PEFC studied in this study was characterized by I-V curves in potentiostatic mode. The I-V curves representing steady-state performance were obtained from OCV to 0.25V, and the dynamic performance responses were obtained at some points of voltages. The anodic external humidification was applied and the humidity was controlled from 20% to 100%. The effects of relative humidity of hydrogen were measured with the dry air at the cathode. At high voltage region, the performance at high temperature was higher, but at low voltage region, low temperature condition showed the higher performance. The dynamic responses were observed at the instant when the voltage of the PEFC was changed. It was observed that the performance reached steady-state earlier with the increase of temperature.

  • PDF

Charge/Discharge Mechanism of Multicomponent Olivine Cathode for Lithium Rechargeable Batteries

  • Park, Young-Uk;Shakoor, R.A.;Park, Kyu-Young;Kang, Ki-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • Quasi-equilibrium profiles are analyzed through galvanostatic intermittent titration technique (GITT) and potentiostatic intermittent titration technique (PITT) to study the charge/discharge mechanism in multicomponent olivine structure ($LiMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$). From GITT data, the degree of polarization is evaluated for the three regions corresponding to the redox couples of $Mn^{2+}/Mn^{3+}$, $Fe^{2+}/Fe^{3+}$ and $Co^{2+}/Co^{3+}$. From PITT data, the current vs. time responses are examined in each titration step to find out the mode of lithium de-intercalation/intercalation process. Furthermore, lithium diffusivities at specific compositions (x in $Li_xMn_{1/3}Fe_{1/3}Co_{1/3}PO_4$) are also calculated. Finally, total capacity ($Q^{total}$) and diffusional capacity ($Q^{diff}$) are obtained for some selected voltage steps. The entire study consistently confirms that the charge/discharge mechanism of multicomponent olivine cathode is associated with a one-phase reaction rather than a biphasic reaction.

A Study of Hydrogen Embrittlement Limit Potential of Cu-Containing High Strength Low Alloy Steel for Marine Structure by Potentiostatic SSRT Method (정전위 SSRT법에 의한 해양구조물용 Cu함유 고장력저합금강의 수소취성한계전위 규명에 관한 연구)

  • 김성종;박태원;심인옥;김종호;김영식;문경만
    • Journal of Welding and Joining
    • /
    • v.19 no.2
    • /
    • pp.182-190
    • /
    • 2001
  • A marine structural material was well known to have high tensile strength, good weldability and proper corrosion resistance. Cu-containing high strength low alloy(HSLA) steel was recently developed for their purposes mentioned above. And the steel is free about preheating for welding, therefore it is reported that shipbuilding cost by using it can be saved more or less. However the marine structural materials like Cu-containing HSLA steel are being generally adopted with cathodic protection method in severe corrosive environment like natural sea water but the high strength steel may give rise to Hydrogen Embrittlement due to over protection at high cathodic current density for cathodic protection. In this study Cu-containing HSLA steel using well for marine atructure was investigated about the susceptibility of Hydrogen Embrittlement as functions of tensile strength, strain ratio, fracture time, and fracture mode, etc. and an optimum cathodic protection potential by slow strain rate test(SSRT) method as well as corrosion properties in natural sea water. And its corrosion resistance was superior to SS400 steel, but Hydrogen Embrittlement susceptibility of Cu-containing HSLA steel was higer than that of SS400 steel. However Hydrogen Embrittlement of its steel by SSRT method was showed with pheonomena such as decreasing of fracture time, strain ratio and fracture mode of QC(quasi-cleavage). Eventually it is suggested that an optimum cathodic protection potential not presenting Hydrogen Embrittlement of Cu-containing of HSLA steel by SSRT method was from-770mv(SCE) to - 900mV(SCE)under natural sea water.

  • PDF

Cyclic Voltammetry Study on Electrodeposition of CuInSe2 Thin Films (Cyclic Voltammetry를 이용한 CuInSe2 박막의 전기화학적 전착 연구)

  • Hong, Soonhyun;Lee, Hyunju;Kim, Yangdo
    • Korean Journal of Materials Research
    • /
    • v.23 no.11
    • /
    • pp.638-642
    • /
    • 2013
  • Chalcopyrite $CuInSe_2$(CIS) is considered to be an effective light-absorbing material for thin film photovoltaic solar cells. CIS thin films have been electrodeposited onto Mo coated and ITO glass substrates in potentiostatic mode at room temperature. The deposition mechanism of CIS thin films has been studied using the cyclic voltammetry (CV) technique. A cyclic voltammetric study was performed in unitary Cu, In, and Se systems, binary Cu-Se and In-Se systems, and a ternary Cu-In-Se system. The reduction peaks of the ITO substrate were examined in separate $Cu^{2+}$, $In^{3+}$, and $Se^{4+}$ solutions. Electrodeposition experiments were conducted with varying deposition potentials and electrolyte bath conditions. The morphological and compositional properties of the CIS thin films were examined by field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The surface morphology of as-deposited CIS films exhibits spherical and large-sized clusters. The deposition potential has a significant effect on the film morphology and/or grain size, such that the structure tended to grow according to the increase of the deposition potential. A CIS layer deposited at -0.6 V nearly approached the stoichiometric ratio of $CuIn_{0.8}Se_{1.8}$. The growth potential plays an important role in controlling the stoichiometry of CIS films.

Study on the Steady-State and Dynamic Performance of Polymer Electrolyte Fuel Cells with the Changes of External and Self-Humidification Conditions (고분자 전해질 연료전지의 외부가습 및 지체가습 변화에 의한 정상상태 및 비정상상태 성능특성 연구)

  • Lee, Yong-Taek;Kim, Bo-Sung;Kim, Yong-Chan;Choi, Jong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.196-202
    • /
    • 2007
  • The performance characteristics of the polymer electrolyte fuel cells (PEFCS) were investigated under various humidification conditions at steady-state and transient conditions. The PEFC studied in this study was characterized by I-V curves in the potentiostatic mode and EIS (electrochemical impedance spectroscopy). The I-V curves representing steady-state performance were obtained from OCV to 0.25 V, and the dynamic performance responses were obtained at some voltages. The effects of anodic external humidification were measured by varying relative humidity of hydrogen from 20% to 100% while dry air was supplied in the cathode. At the high voltage region, the performance became higher with the increase of the temperature, while at the low voltage region, the performance decreased with the increase of temperature. The EIS showed that ohmic losses were larger at the dry condition of membrane and the effects of mass transport losses increased remarkably when the external and self-humidification were high. The dynamic responses were also monitored by changing the voltage of the PEFC instantly. As the temperature increased, the current reached steady-state earlier. The self-humidification with the generated water delayed the stabilization of the current except for low voltage conditions.