DOI QR코드

DOI QR Code

Time-resolved Analysis for Electroconvective Instability under Potentiostatic Mode

일정 전위 모드에서의 전기와류 불안정성에 대한 시간-분해 해석

  • Lee, Hyomin (Department of Chemical and Biological Engineering, Jeju National University)
  • 이효민 (제주대학교 생명화학공학과)
  • Received : 2019.12.23
  • Accepted : 2020.01.20
  • Published : 2020.05.01

Abstract

Electroconvective instability is a non-linear transport phenomenon which can be found in ion-selective transport system such as electrodialysis, Galvanic cell and electrolytic cell. The instability is triggered by the fluctuation of space charge layer in adjacent of ion-selective surface, leading to increase of mass transport rate. Thus, in the aspect of mass transport, the instability has an important meaning. Although recent experimental techniques have opened up an avenue to direct visualize the instability, fundamental investigations have been conducted in limited area due to several experimental limitations. In this work, the electroconvective instability under potentiostatic mode was solved by numerical method in order to demonstrate correlation between current-time curve and the instability behavior. By rigorous time-resolved analysis, the transition behaviors can be divided into three stages; formation of space charge layer - growth of electroconvective instability - steady state. Furthermore, scaling laws of transition time were numerically obtained according to applied voltage as well.

전기와류 불안정성은 전기투석 장치, 갈바니 전지, 전해 전지 등의 이온-선택성 이동 현상계에서 발견되는 비선형 이동 현상이다. 이 불안정성은 이온-선택성 표면 근처 공간 전하층의 요동에 의해 발생하며, 불안정성의 발현은 물질 전달 속도를 증가시켜 준다. 따라서 전기와류 불안정성은 물질 전달 측면에서 중요한 의미를 가진다. 최근의 실험적 기법들이 불안정성의 직접적 가시화를 가능하게 해주었으나, 실험적 한계점에 의해 불안정성의 원론적 연구는 제한된 영역에서만 이루어지고 있다. 본 연구에서는 일정 전위 모드에서의 전기와류 불안정성에 대한 수치 해석을 진행하여 전류-시간 곡선과 불안정성의 거동 간의 상관관계를 밝히고자 하였다. 시간-분해 해석을 통하여, 불안정성의 발달 거동을 SCL 형성 - 전기와류 불안정성의 성장 - 정상 상태 도달로 구분 지었다. 더불어, 인가 전위에 따른 전이 시간들의 크기 법칙 또한 수치적으로 유도하였다.

Keywords

References

  1. Rubinstein, I. and Zaltzman, B., "Electro-Osmotically Induced Convection at a Permselective Membrane," Phys. Rev. E, 62(2), 2238-2251(2000). https://doi.org/10.1103/PhysRevE.62.2238
  2. Rubinstein, I. and Zaltzman, B., "Electro-osmotic Slip of The Second Kind and Instability in Concentration Polarization at Electrodialysis Membranes," Math. Models Methods Appl. Sci., 11(02), 263-300(2001). https://doi.org/10.1142/S0218202501000866
  3. Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. and Han, J., "Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel," Phys. Rev. Lett., 99(4), 044501(2007). https://doi.org/10.1103/PhysRevLett.99.044501
  4. Rubinstein, S. M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R. G. H., Mugele, F. and Wessling, M., "Direct Observation of a Nonequilibrium Electro-Osmotic Instability," Phys. Rev. Lett., 101(23), 236101(2008). https://doi.org/10.1103/PhysRevLett.101.236101
  5. Yossifon, G. and Chang, H.-C., "Selection of Nonequilibrium Overlimiting Currents: Universal Depletion Layer Formation Dynamics and Vortex Instability," Phys. Rev. Lett., 101(25), 254501(2008). https://doi.org/10.1103/PhysRevLett.101.254501
  6. Kim, S. J., Ko, S. H., Kwak, R., Posner, J. D., Kang, K. H. and Han, J., "Multi-vortical Flow Inducing Electrokinetic Instability in ion Concentration Polarization Layer," Nanoscale, 4(23), 7406-7410(2012). https://doi.org/10.1039/c2nr32467a
  7. Kwak, R., Pham, V. S., Lim, K. M. and Han, J., "Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices," Phys. Rev. Lett., 110(11), 114501(2013). https://doi.org/10.1103/PhysRevLett.110.114501
  8. Green, Y. and Yossifon, G., "Dynamical Trapping of Colloids at the Stagnation Points of Electro-osmotic Vortices of the Second Kind," Phys. Rev. E, 87(3), 033005(2013). https://doi.org/10.1103/PhysRevE.87.033005
  9. Kim, S. J., Li, L. D. and Han, J., "Amplified Electrokinetic Response by Concentration Polarization near Nanofluidic Channel," Langmuir, 25(13), 7759-7765(2009). https://doi.org/10.1021/la900332v
  10. Druzgalski, C. L., Andersen, M. B. and Mani, A., "Direct Numerical Simulation of Electroconvective Instability and Hydrodynamic Chaos Near an Ion-selective Surface," Phys. Fluids, 25(11), 110804(2013). https://doi.org/10.1063/1.4818995
  11. Demekhin, E. A., Nikitin, N. V. and Shelistov, V. S., "Direct Numerical Simulation of Electrokinetic Instability and Transition to Chaotic Motion," Phys. Fluids, 25(12), 122001(2013). https://doi.org/10.1063/1.4843095
  12. Lee, H., "Electroconvective Instability on Undulated Ion-selective Surface," Korean Chem. Eng. Res., 57(5), 735-742(2019). https://doi.org/10.9713/kcer.2019.57.5.735
  13. Karatay, E., Druzgalski, C. L. and Mani, A., "Simulation of Chaotic Electrokinetic Transport: Performance of Commercial Software Versus Custom-built Direct Numerical Simulation Codes," J. Colloid Interface Sci., 446, 67-76(2015). https://doi.org/10.1016/j.jcis.2014.12.081
  14. Pham, V. S., Li, Z., Lim, K. M., White, J. K. and Han, J., "Direct Numerical Simulation of Electroconvective Instability and Hysteretic Current-voltage Response of a Permselective Membrane," Phys. Rev. E, 86(4), 046310(2012). https://doi.org/10.1103/PhysRevE.86.046310