• 제목/요약/키워드: Potential query

검색결과 43건 처리시간 0.024초

한국어 시소러스를 이용한 웹 문서 추천 에이전트 (A Web-document Recommending System using the Korean Thesaurus)

  • 서민혜;이성욱;서정연
    • 한국정보통신학회논문지
    • /
    • 제13권1호
    • /
    • pp.103-109
    • /
    • 2009
  • 우리는 사용자의 행동을 관찰하고 학습하여 사용자 대신에 문서를 수집 분석함으로써 사용자에게 필요한 정보만을 추출하여 제공하는 웹 문서 추천 에이전트 시스템을 개발한다. 또한 우리는 이 시스템에 한국어 시소러스를 이용한 질의어 확장 방법의 적용을 제안한다. 한국어 시소러스를 이용한 질의어 확장을 위해, 새로운 웹 문서를 검색하기 위해 생성된 질의어를 한국어 시소러스를 통하여 그 하의어들을 찾아 후보 집합을 생성해 주고, TF-IDF와 상호 정보량을 이용하여 후보 집합 안에 있는 단어 들 중에서 질의어와 가장 많은 관련 정보를 가지고 있는 단어를 추출함으로써 질의어를 확장해 주었다. 확장되지 않은 질의어만으로 웹 문서를 추천하게 되면 추천된 웹 문서의 수는 극히 제한적이지만, 질의어를 확장함으로써 보다 더 많은 유용한 웹 문서를 사용자에게 추천 및 제공 할 수 있다.

인용 지표를 이용한 재순위화 및 질의 확장의 성능 평가 - 인용색인 데이터베이스를 기반으로 - (Performance Evaluation of Re-ranking and Query Expansion for Citation Metrics: Based on Citation Index Databases)

  • 이혜경;이용구
    • 한국문헌정보학회지
    • /
    • 제57권3호
    • /
    • pp.249-277
    • /
    • 2023
  • 본 연구의 목적은 인용 지표가 인용 색인 데이터베이스의 검색성능 향상에 기여할 가능성을 파악하는 데에 있다. 이를 위하여 본 연구는 문헌정보학 분야 10개의 질의를 Web of Science에서 검색하여 수집한 3,467건의 문헌과 2000년부터 2021년까지 SSCI 문헌정보학 분야 저널 85종에 수록된 60,734건의 문헌을 기반으로 적합성 판단을 거쳐, 검색 결과의 상위 100순위에 대한 성능 및 검색 방식과 인용 지표를 활용한 재순위화, 그리고 벡터 공간모형 검색시스템 구축 등에 따른 질의 확장 실험을 수행하였다. 그 결과 첫째, 인용 지표를 단독으로 사용한 재순위화의 성능은 Web of Science의 검색성능과 상이하였으며, 인용 지표는 Web of Science 기존 시스템에 적용되지 않는 독립적인 지표로 작용하고 있었다. 둘째, 고유 질의어 수에 질의어의 총 출현 빈도를 조합하고 인용수를 보조적으로 사용했을 때, 성능에 긍정적인 영향을 미칠 것으로 확인하였다. 셋째, 질의 확장에서는 전반적으로 벡터 공간모형 기반 검색시스템의 기본 성능 대비 성능이 향상되었다. 넷째, 이용자 적합성을 통해 질의 확장을 적용한 경우가 시스템 적합성을 적용한 경우보다 성능이 향상 되었다. 다섯째, 피인용 수를 적합 문헌과 더불어 사용하면 최상위권 내 적합 문헌에서의 순위 변동 가능성을 보여주었다.

효율적인 연속 충돌감지를 위한 프리즘 기반의 메쉬 컬링 기법 (Prism-based Mesh Culling Method for Effective Continuous Collision Detection)

  • 우병광;유효선;최유주
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제15권4호
    • /
    • pp.1-11
    • /
    • 2009
  • 본 연구에서는 다각형 메쉬 모델들에 대한 시뮬레이션 수행시 주요 병목현상으로 제기되는 충돌감지의 효율성을 높이기 위하여, 연속 시간사이에서 이산시간 스위프트로 형성된 프리즘을 단위로 하는 효율적 메쉬 컬링 기법을 제안한다. 제안 기법에서는 우선, 연속 시간사이에서 대응되는 두 삼각형을 이용하여 프리즘을 정의하고, 프리즘 단위의 폐쇄검사(Occlusion Query) 기반 가시성 테스트(Visibility Test)를 실시하여, 교차 가능성이 없는 프리즘을 세부 충돌테스트의 대상에서 제외시킨다. 또한, 가시성 테스트 결과로 추출된 프리즘의 충돌가능 집합(PCS: Potential Colliding Set)에서 충돌 가능성이 없는 프리즘의 쌍들을 분리축 테스트(SAT: Separating Axis Test)을 기반으로 분류하는 협대역 컬링(Narrow Band Culling)을 수행한다. 분리축 테스트 시, 두 프리즘의 영역을 각각의 반공간(Half Space)에 포함시키는 평면을 정의하고 이에 수직인 주축을 정의하여, 단일 주축에 대한 분리 검사를 수행함으로써 수행 효율성을 높인다. 제안기법의 성능을 평가하기 위하여 서로 다른 크기의 벤치마크 모델을 선정하고, 제안 기법 적용 전후의 세부 층돌검사 대상 프리즘 쌍의 수를 비교하였다. 또한, 단일 주축에 대한 분리축 테스트 기반 컬링의 효율성을 입증하기 위하여, 프리즘 쌍에 대한 가시성테스트 실험 결과와 비교하였다. 2916개와 2731개의 삼각형으로 구성된 두 메쉬모델에 대한 컬링 실험에서, 제안 컬링기법 적용시 99%의 효과적인 컬링결과를 얻었다.

  • PDF

ONTOLOGY DESIGN FOR THE EFFICIENT CUSTOMER INFORMATION RETRIEVAL

  • Gu, Mi-Sug;Hwang, Jeong-Hee;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.345-348
    • /
    • 2005
  • Because the current web search engine estimates the similarity of documents, using the frequency of words, many documents irrespective of the user query are provided. To solve these kinds of problems, the semantic web is appearing as a future web. It is possible to provide the service based on the semantic web through ontology which specifies the knowledge in a special domain and defines the concepts of knowledge and the relationships between concepts. In this paper to search the information of potential customers for home-delivery marketing, we model the specific domain for generating the ontology. And we research how to retrieve the information, using the ontology. Therefore, in this paper, we generate the ontology to define the domain about potential customers and develop the search robot which collects the information of customers.

  • PDF

The Kernel Trick for Content-Based Media Retrieval in Online Social Networks

  • Cha, Guang-Ho
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.1020-1033
    • /
    • 2021
  • Nowadays, online or mobile social network services (SNS) are very popular and widely spread in our society and daily lives to instantly share, disseminate, and search information. In particular, SNS such as YouTube, Flickr, Facebook, and Amazon allow users to upload billions of images or videos and also provide a number of multimedia information to users. Information retrieval in multimedia-rich SNS is very useful but challenging task. Content-based media retrieval (CBMR) is the process of obtaining the relevant image or video objects for a given query from a collection of information sources. However, CBMR suffers from the dimensionality curse due to inherent high dimensionality features of media data. This paper investigates the effectiveness of the kernel trick in CBMR, specifically, the kernel principal component analysis (KPCA) for dimensionality reduction. KPCA is a nonlinear extension of linear principal component analysis (LPCA) to discovering nonlinear embeddings using the kernel trick. The fundamental idea of KPCA is mapping the input data into a highdimensional feature space through a nonlinear kernel function and then computing the principal components on that mapped space. This paper investigates the potential of KPCA in CBMR for feature extraction or dimensionality reduction. Using the Gaussian kernel in our experiments, we compute the principal components of an image dataset in the transformed space and then we use them as new feature dimensions for the image dataset. Moreover, KPCA can be applied to other many domains including CBMR, where LPCA has been used to extract features and where the nonlinear extension would be effective. Our results from extensive experiments demonstrate that the potential of KPCA is very encouraging compared with LPCA in CBMR.

An Approach for the Cross Modality Content-Based Image Retrieval between Different Image Modalities

  • Jeong, Inseong;Kim, Gihong
    • 한국측량학회지
    • /
    • 제31권6_2호
    • /
    • pp.585-592
    • /
    • 2013
  • CBIR is an effective tool to search and extract image contents in a large remote sensing image database queried by an operator or end user. However, as imaging principles are different by sensors, their visual representation thus varies among image modality type. Considering images of various modalities archived in the database, image modality difference has to be tackled for the successful CBIR implementation. However, this topic has been seldom dealt with and thus still poses a practical challenge. This study suggests a cross modality CBIR (termed as the CM-CBIR) method that transforms given query feature vector by a supervised procedure in order to link between modalities. This procedure leverages the skill of analyst in training steps after which the transformed query vector is created for the use of searching in target images with different modalities. Current initial results show the potential of the proposed CM-CBIR method by delivering the image content of interest from different modality images. Despite its retrieval capability is outperformed by that of same modality CBIR (abbreviated as the SM-CBIR), the lack of retrieval performance can be compensated by employing the user's relevancy feedback, a conventional technique for retrieval enhancement.

영상에 대한 Semantics 축적이 가능한 Relevance Feedback (Semantics Accumulation-Enabled Relevance Feedback)

  • 오상욱;설상훈;정민교
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1306-1313
    • /
    • 2005
  • Relevance Feedback(RF)은 사용자의 인지적 피드백(perceptual feedback)을 사용하는 영상 검색 기법 중의 하나로서, 사용자 피드백을 통해 얻게 되는 적합성 정보(relevance information)를 이용하여 사용자 질의(query)를 점진적으로 구체화하게 된다. 그러나, 기존 RF 기법에서는 이러한 적합성 정보가 매우 유용한 정보임에도 불구하고, 검객이 끝나는 순간 없애버리고 만다. 그래서, 본 논문에서는 사용자의 인지적 피드백 정보를 버리지 않고, 저장하는 새로운 개념의 RF를 제안한다. 새로 제안된 RF는 시간의 흐름에 따라 축적되어 저장된 상위 레벨의 적합성 정보(high-level relevance information)를 하위 레벨의 특징벡터(low-level feature vectors)와 동적으로(dynamically) 결합하여 사용함으로써, 검색의 효율성을 크게 향상시킨다. 제안 방법의 우수성을 입증하기 위해 다양한 실험 결과도 제시한다.

  • PDF

GTVseq: A Web-based Genotyping Tool for Viral Sequences

  • Shin, Jae-Min;Park, Ho-Eun;Ahn, Yong-Ju;Cho, Doo-Ho;Kim, Ji-Han;Kee, Mee-Kyung;Kim, Sung-Soon;Lee, Joo-Shil;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • 제6권1호
    • /
    • pp.54-58
    • /
    • 2008
  • Genotyping Tool for Viral SEQuences (GTVseq) provides scientists with the genotype information on the viral genome sequences including HIV-1, HIV-2, HBV, HCV, HTLV-1, HTLV-2, poliovirus, enterovirus, flavivirus, Hantavirus, and rotavirus. GTVseq produces alternative and additive genotype information for the query viral sequences based on two different, but related, scoring methods. The genotype information produced is reported in a graphical manner for the reference genotype matches and each graphical output is linked to the detailed sequence alignments between the query and the matched reference sequences. GTVseq also reports the potential 'repeats' and/or 'recombination' sequence region in a separated window. GTVseq does not replace completely other well-known genotyping tools such as NCBI's virus sequence genotyping tool (http://www.ncbi. nlm.nih.gov/projects/genotyping/formpage.cgi), but provides additional information useful in the confirmation or for further investigation of the genotype(s) for the newly isolated viral sequences.

Can Big Data Help Predict Financial Market Dynamics?: Evidence from the Korean Stock Market

  • Pyo, Dong-Jin
    • East Asian Economic Review
    • /
    • 제21권2호
    • /
    • pp.147-165
    • /
    • 2017
  • This study quantifies the dynamic interrelationship between the KOSPI index return and search query data derived from the Naver DataLab. The empirical estimation using a bivariate GARCH model reveals that negative contemporaneous correlations between the stock return and the search frequency prevail during the sample period. Meanwhile, the search frequency has a negative association with the one-week- ahead stock return but not vice versa. In addition to identifying dynamic correlations, the paper also aims to serve as a test bed in which the existence of profitable trading strategies based on big data is explored. Specifically, the strategy interpreting the heightened investor attention as a negative signal for future returns appears to have been superior to the benchmark strategy in terms of the expected utility over wealth. This paper also demonstrates that the big data-based option trading strategy might be able to beat the market under certain conditions. These results highlight the possibility of big data as a potential source-which has been left largely untapped-for establishing profitable trading strategies as well as developing insights on stock market dynamics.

정보검색시스템에서의 이용자 인터페이스 기능에 관한 분석적 고찰 (Analysis on User Interface in Information Retrieval Systems)

  • 서은경
    • 정보관리학회지
    • /
    • 제16권4호
    • /
    • pp.125-150
    • /
    • 1999
  • 본 연구는 정보검색시스템에서 중요한 역할을 하는 이용자 인터페이스의 효용성을 높이기 위해서 시도된 다양한 기술 및 기법을 다각적으로 조사하였다. 특히 질의어처리 인터페이스, 탐색전략 인터페이스, 적합성 피드백 인터페이스를 중점으로 탐색관련 인터페이스 기능과 문헌 브라우즈 인터페이스, 탐색결과 브라우즈 인터페이스와 같은 브라우즈 관련 인터페이스 기능에 대하여 중점적으로 살펴보았다. 앞으로의 이용자 인터페이스 기능은 시각적 검색 기법, 인공지능 기법, 멀티모드 커뮤니케이션 기법 등이 많이 사용될 것으로 보았다.

  • PDF