• Title/Summary/Keyword: Potential flow

Search Result 2,179, Processing Time 0.031 seconds

Recovery of Silver from Artificial Photographic Wastewater by Continuous Flow Electrolytic Process (순환공정법(循環工程法)을 적용(適用)한 인공(人工) 사진폐액(寫眞廢液)으로부터의 전해채취(電解採取)에 의한 은(銀)의 회수(回收))

  • Chung, Won-Ju;Kim, Dong-Su
    • Resources Recycling
    • /
    • v.16 no.1 s.75
    • /
    • pp.68-72
    • /
    • 2007
  • The influences of reduction time, potential difference and ionic concentration flow rate have been investigated on the electrolytic recovery of silver from artificial photographic wastewater in continuous flow reactor system. As the initial concentration of silver ion and applied potential were increased, the amount of silver recovered was observed to be raised. Also, the electrolytically recovered material from artificial wastewater was proved to be pure silver based on the qualitative analyses by EPMA and XRD.

Pixel-level prediction of velocity vectors on hull surface based on convolutional neural network (합성곱 신경망 기반 선체 표면 유동 속도의 픽셀 수준 예측)

  • Jeongbeom Seo;Dayeon Kim;Inwon Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.18-25
    • /
    • 2023
  • In these days, high dimensional data prediction technology based on neural network shows compelling results in many different kind of field including engineering. Especially, a lot of variants of convolution neural network are widely utilized to develop pixel level prediction model for high dimensional data such as picture, or physical field value from the sensors. In this study, velocity vector field of ideal flow on ship surface is estimated on pixel level by Unet. First, potential flow analysis was conducted for the set of hull form data which are generated by hull form transformation method. Thereafter, four different neural network with a U-shape structure were conFig.d to train velocity vectors at the node position of pre-processed hull form data. As a result, for the test hull forms, it was confirmed that the network with short skip-connection gives the most accurate prediction results of streamlines and velocity magnitude. And the results also have a good agreement with potential flow analysis results. However, in some cases which don't have nothing in common with training data in terms of speed or shape, the network has relatively high error at the region of large curvature.

Effects of Electrohydrodynamic Flow and Turbulent Diffusion on Collection Efficiency of an Electrostatic Precipitator with Cavity Walls

  • Park, Seok-Joo;Park, Young-Ok;Kim, Sang-Soo;McMurry, Peter H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.97-103
    • /
    • 2001
  • The effects of the electrohydrodynamic (EHD) flow and turbulent diffusion on the collection efficiency of a model ESP composed of the plates with a cavity were studied through numerical computation. The electric field and ion space charge density were calculated by the Poisson equation of the electrical potential and the current continuity equation. The EHD flow field was solved by the continuity and momentum equations of the gas phase including the electrical body force induced by the movement of ions under the electric field. The RNG $k-{\varepsilon}$ model was used to analyze the turbulent flow. The particle concentration distribution was calculated from the convective diffusion equation of the particle phase. As the ion space charge increased, the particulate collection efficiency increased because the electrical potential increased over the entire domain in the ESP. The collection efficiency decreased and then increased, i.e. had a minimum value, as the EHD circulating flow became stronger when the electrical migration velocity of the charged particle was low. However, the collection efficiency decreased with the stronger EHD flow when the electrical migration of the particle was higher relatively. The collection efficiency of the model ESP increased as the turbulent diffusivity of the particle increased when the electrical migration velocity of the particle was low. However, the collection efficiency decreased for increasing the turbulent diffusivity when the electrical migration of the particle was higher relatively.

  • PDF

Design of maximum lift airfoil in viscous, compressible flow (점성, 압축성을 고려한 최대양력 익형설계)

  • 손병진;맹주성;최상경;조기현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-115
    • /
    • 1988
  • A numerical procedure for determining the airfoil shape that maximizes the lift is presented. The structure of the flow field is calculated by iteratively coupling potential flow and boundary analysis using the viscous-inviscid interaction method. The potential flow field is obtained by the vortex panel method and boundary layer flow is analyzed by means of integral approximation method which is capable of handling the laminar, transition and turbulent flow regimes. As the result of this study, it is found that the calculated flow regimes have good agreement with the existing experimented data. Davidon-Fletcher-Powell method and Augmented Lagrange Multiplier method are used for the optimal techniques. NACA 23012, NACA 65-3-21, NACA 64-2-415, NACA 64-2-A215 airfoils are used for determining the optimal airfoil shapes as a basic and compensate airfoils. Optimal design showed that the lift coefficients are increased by 17.4% at M$_{0}$=0.2 and 29% at M$_{0}$=0.3, compared with those of basic airfoil.oil.

Low-Cost IoT Sensors for Flow Measurement in Open Channels: A Comparative Study of Laboratory and Field Performance

  • Khatatbeh, Arwa;Kim, Young-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.172-172
    • /
    • 2023
  • The use of low-cost IoT sensors for flow measurement in open channels has gained significant attention due to their potential to provide continuous and real-time data at a low cost. However, the accuracy and reliability of these sensors in real-world scenarios are not well understood. This study aims to compare the performance of low-cost IoT sensors in the laboratory and real-world conditions to evaluate their accuracy and reliability. Firstly, a low-cost IoT sensor was integrated with an IoT platform to acquire real-time flow rate data. The IoT sensors were calibrated in the laboratory environment to optimize their accuracy, including different types of low-cost IoT sensors (HC-SR04 ultrasonic sensor & YF-S201 sensor) using an open channel prototype. After calibration, the IoT sensors were then applied to a real-world case study in the Dorim-cheon stream, where they were compared to traditional flow measurement methods to evaluate their accuracy.The results showed that the low-cost IoT sensors provided accurate and reliable flow rate data under laboratory conditions, with an error range of less than 5%. However, when applied to the real-world case study, the accuracy of the IoT sensors decreased, which could be attributed to several factors such as the effects of water turbulence, sensor drift, and environmental factors. Overall, this study highlights the potential of low-cost IoT sensors for flow measurement in open channels and provides insights into their limitations and challenges in real-world scenarios.

  • PDF

A Study on Assessment of Tidal Stream Resources (조류자원의 평가에 관한 연구)

  • Yang, Chang-Jo;Choi, M.S.;Lee, Y.H.
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2011.06a
    • /
    • pp.309-309
    • /
    • 2011
  • This paper outlines extraction potential of tidal stream resources from the simplified channel in which flow is driven by a head difference between inlet and outlet. Energy extraction alters the flow within a simple channel, and extraction of 10% energy flux in a natural channel would give rise to a flow speed reduction of about 5.7%.

  • PDF

Effect of Discharge Gas on the Electrical Characteristics of the Glow Discharge Plasma for the Gas Chromatographic Detector (글로우방전 가스크로마토그라프 검출기에서 방전가스의 영향)

  • 박현미;강종성;김효진
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.480-486
    • /
    • 1995
  • The change in discharge current of a glow discharge has been shown the potential sensitive detector for gas chromatography. To investigate the effect of carrier gas on the electrical characteristics of the discharge and the peak response, the discharge pressure, gas flow rate, and discharge gap have been studied. The discharge gas included the Ar, He, and N$_{2}$. The gas flow rate has been found one of the important parameters to affect both the electrical characteristics and the peak response.

  • PDF

An Application of the Localized Finite Element Method to Two-dimensional Free Surface Wave Problems (2차원 자유표면파 문제에서의 국소 유한요소법의 응용)

  • Hyun-Kwon,Kil;K.J.,Bai
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.22 no.3
    • /
    • pp.9-18
    • /
    • 1985
  • The numerical calculation for solving boundary-value problem related to potential flows with a free surface is carried out by application of the localized finite element method. Only forced motion of 2-D body in infinitely deep fluid is considered, although this schemes is equally applicable to any first order time-harmonic problems of similar nature. The infinite domain of the fluid is separated into the inner flow field and the outer flow field with common inter-surface boundary. The finite element method is applied to obtain the solution in the inner flow field and the Green functions are utilized to represent the solution in the outer flow field. At the inter-surface boundary, the continuity of the value of potential and the normal derivative of the potential(i.e. matching condition) is conserved. The present method has better computational efficiency than the previous LFEM and the integral equation method of Frank. This enhanced computational efficiency is presumably due to the fact that the present method gives a symmetric coefficient matrix and requires less computational time in calculating the influence coefficient matrix of Green function than the integral equation method. And the irregular frequency desen't exist because the uniqueness of the solution is assured by the such that the exact free surface condition is satisfied on the boundary of the localized finite element region(i.e. inner region). As an example of the above method, the hydrodynamic forces for the circular cylinder and the rectangular cylinders are calculated. In the computed results, the small number of singularity distribution segments($3{\sim}6$) give good result relative to Ursell's and Vugts'.

  • PDF

Nonlinear Potential Flow Analysis for the Hull with a Transom Stern (트랜섬 선미를 가지는 선형의 비선형 포텐셜 유동해석)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Shin, Sung-Chul;Youn, Sun-Dong;Yang, Jun-Mo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • In this paper, the flow phenomena and free surface wave pattern around the hull with a transom stern advancing on the free surface in steady state had been studied and the numerical analysis program had been developed using Rankine source panel method based on potential flow analysis in which the non-linearities of the free surface boundary conditions had been fully satisfied. To verify the validity of the developed program the numerical calculations for Athena hull and KCS(KRISO container ship) hull had been performed and the results of the numerical computation had been compared with the ones of the model test experiment.

  • PDF

Analysis of a Marine Propeller in Steady Flow by a Higher-Order Boundary Element Method (고차경계요소법을 이용한 정상 유동중의 프로펠러 해석)

  • K.J. Paik;S.B. Suh;H.H. Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.31-40
    • /
    • 2001
  • Low-order panel methods are being used to design marine propellers. Since the potential value over each panel for these methods is assumed to be a constant, the accuracy of prediction is known to be limited. Therefore, a higher order boundary element method(HOBEM) has been studied to enhance the accuracy of prediction. In this paper, a HOBEM representing the body boundary surfaces and physical quantities by a 9-node Lagrangian shape function is employed to analyse the flow around marine propellers in steady potential flow. First, the numerical results for a circular wing with thickness variations are compared with Jordan's linear solution. Then, the computational results of two propellers(DTRC 4119 & DTRC 4842 propeller) are compared with the experimental and numerical results published. The pressure distribution on the surface of the propeller is also compared with experimental data.

  • PDF