Analysis of a Marine Propeller in Steady Flow by a Higher-Order Boundary Element Method

고차경계요소법을 이용한 정상 유동중의 프로펠러 해석

  • 백광준 (부산대학교 조선해양공학과) ;
  • 서성부 (부산대학교 조선해양공학과) ;
  • 전호환 (부산대학교 조선해양공학과)
  • Published : 2001.08.01

Abstract

Low-order panel methods are being used to design marine propellers. Since the potential value over each panel for these methods is assumed to be a constant, the accuracy of prediction is known to be limited. Therefore, a higher order boundary element method(HOBEM) has been studied to enhance the accuracy of prediction. In this paper, a HOBEM representing the body boundary surfaces and physical quantities by a 9-node Lagrangian shape function is employed to analyse the flow around marine propellers in steady potential flow. First, the numerical results for a circular wing with thickness variations are compared with Jordan's linear solution. Then, the computational results of two propellers(DTRC 4119 & DTRC 4842 propeller) are compared with the experimental and numerical results published. The pressure distribution on the surface of the propeller is also compared with experimental data.

일반적으로 특이점들을 분포하여 물체주위 유동장을 해석할 때 저차패널법(Low-Order Panel Method)이 유용하게 사용되어져 왔다. 저차패널법과는 다르게 적분방정식의 계산정도와 해의 수렴성을 높일 수 있는 방법으로서, 물체경계의 형상을 2차 이상의 고차곡면요소로 표현하고 각 곡면요소 내에서 물리량의 변화를 동일한 차수를 갖는 고차경계요소법을 사용할 수 있다. 본 연구에서는 물체표면의 곡면요소와 물리량의 변화를 9절점 라그란지안(Lagrangian) 형상함수를 사용하여 정상 포텐셜유동 중에 작동하는 프로펠러 주위의 유동을 해석하였다. 개발된 프로그램을 프로펠러의 해석에 앞서 원형 날개에 대하여 Jordan의 선형 해석해와 비교하였으며, 두께의 영향을 관찰하였다. 프로펠러의 해석을 위해 DTRC 4119 프로펠러와 DTRC 4842 프로펠러에 적용하여 실험치와 계산치를 비교 검토하였다.

Keywords

References

  1. J. of the Society of Naval Architects of Korea v.37 no.3 Numerical Experimentation of a 2-D B-Spline Higher Order Panel Method Cho,C.H.;Lee,C.S.
  2. Trans. SNAK v.32 no.1 Analysis of Steady and Unsteady Flow Around a Ship Using a Higher-Order Boundary Element Method Hong,S.Y.;Choi,H.S.
  3. Appendix C of Koyama (1993) in this reference Steady performance Analysis for Two Propellers using MIT-PSF-10 Hsin,C.Y.;Kerwin,J.E.
  4. A Two-Dimensional Higher-Order Panel Method Based on B-Splines, Theory and Program Documentation Hsin,C.Y.;Kerwin,J.E.;Newman,J.N.
  5. Proceedings of SNAK A B-Spline Based Higher Order Panel Method for Analysis of Three Dimensional Potential Flow Hwang,U.S.;Cho,C.H.;Lee,C.S.
  6. Journal of AIAA v.11 no.8 Exact solutions for lifting surfaces Jordan,P.F.
  7. Trans. SNAME v.86 Prediction of Steady and Unsteady Marine Propeller Performance by Numerical Lifting-Surface Theory Kerwin,J.E.;Lee,C.S.
  8. Trans. SNAK v.30 no.1 Prediction of Steady Performance of a Propeller by Using a Potential-Based Panel Method Kim,Y.G.;Lee,J.T.;Lee,C.S.;Suh,J.C.
  9. Papers of ship Research Institute no.Sup.15 Comparative Calculations of Propellers by Surface Panel Method - Workshop Organized by 20th ITTC Propulsor committee - Koyama,K.
  10. Ph. D. Thesis. Department of Ocean Engineering, M.I.T. A Potential-based Panel Method for the Analysis of Marine Propellers in Steady Flow Lee,J.T.
  11. AIAA J. v.12 no.2 Subsonic Potential Aerodynamic for Complex Configulaitons: A general theory Morino,L.;Kuo,C.C.
  12. Trans. SNAK v.35 no.3 Analysis of Three-dimensional Water Waves Created by a Hydrofoil Using a Higher-Order Boundary Element Method Park,I.Y.;Chun,H.H.;Kim,S.H.;Ha,D.D.
  13. JSR v.41 no.2 Propeller Wake Sheet Roll-up Modeling in Three Dimensions Pyo,S.W.;Kinnas,S.A.
  14. Appendix B of Koyama (1993) in this reference Predicition of hydrodynamic Performance of DTMB Propellers 4119 and 4882 with panel Method Yang,C.I.