• Title/Summary/Keyword: Potential Yield

Search Result 1,407, Processing Time 0.024 seconds

A comparative study on the estimation methods for the potential yield in the Korean waters of the East Sea (한국 동해 생태계의 잠재생산량 추정방법에 관한 비교 연구)

  • LIM, Jung-Hyun;SEO, Young-Il;ZHANG, Chang-Ik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.54 no.2
    • /
    • pp.124-137
    • /
    • 2018
  • Due to the decrease in coastal productivity and deterioration in the quality of ecosystem which result from the excessive overfishing of fisheries resources and the environmental pollution, fisheries resources in the Korean waters hit the dangerous level in respect of quantity and quality. In order to manage sustainable and effective fisheries resources, it is necessary to suggest the potential yield (PY) for clarifying available fisheries resources in the Korean waters. So far, however, there have been few studies on the estimation methods for PY in Korea. In addition, there have been no studies on the comparative analysis of the estimation methods and the substantial estimation methods for PY targeted for large marine ecosystem (LME) For the reasonable management of fisheries resources, it is necessary to conduct a comprehensive study on the estimation methods for the PY which combines population dynamics and ecosystem dynamics. To reflect the research need, this study conducts a comparative analysis of estimation methods for the PY in the Korean waters of the East Sea to understand the advantages and disadvantages of each method, and suggests the estimation method which considered both population dynamics and ecosystem dynamics to supplement shortcomings of each method. In this study, the maximum entropy (ME) model of the holistic production method (HPM) is considered to be the most reasonable estimation method due to the high reliability of the estimated parameters. The results of this study are expected to be used as significant basic data to provide indicators and reference points for sustainable and reasonable management of fisheries resources.

Influence of Weather Condition for Grain Yield in Barley (기상요인이 맥류수량에 미치는 영향)

  • Suh, Hyung-Soo;Lee, Bong-Hoo;Chung, Gun-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.318-325
    • /
    • 1986
  • The studies were performed to obtain the basic informations on the influence of weather condition for grain yield and yield components in barley. The data of Olbori tested in 9 sites for 12 years were used in the studies. Milled grain yield was decreased in paddy field after rice harvested comparing to the upland condition, and yield potential was differed by test sites with the most stable yield in Gyeongnam. The coefficients of variation analyzed for milled grain yield by years were 12.2-42.6% with the differences between high-yield and low-yield year. Heading date was earlier in high-yield year and southern part compared to the low-yield year and middle part of the Korean peninsular showing the negative correlation between grain yield and heading date. High-yield year showed longer in culm length, shorter in spike length, almost same in number of grains per spike, and lower in 1,000grain weight compared to the low-yield year. Correlation analyzed between number of spikes and grain yield showed positive relationship. Temperatures affected to the grain yield analyzed by high in vegitative growth stage, low in alternative growth stage, and almost same in reproductive growth stage in high-yield year comparing to the low-yield year, however no remarkable differences of temperatures affected were detected in over wintering stage between high-yield and low-yield year. Precipitation amount in high-yield year was lesser in sowing time, more in seedling time, and lesser in over wintering time than those of the low-yield year. Correlation between rainfall amount in the early of April and grain yield showed significant negative correlation with the remarkable affects to the grain yield. Sunshine hours in high-yield year were longer in sowing time, shorter in over wintering time, and after the over wintering time to harvesting time was longer than those of the low-yie-ld year.

  • PDF

Analysis of Sediment Yields at Watershed Scale using Area/Slope-Based Sediment Delivery Ratio in SATEEC (SATEEC 시스템을 이용한 면적/경사도에 의한 유달률 산정 방법에 따른 유사량 분석)

  • Park, Younshik;Kim, Jonggun;Kim, Narnwon;Kim, Ki-sung;Choi, Joongdae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.5
    • /
    • pp.650-658
    • /
    • 2007
  • The Universal Soil Loss Equation (USLE) has been used in over 100 countries to estimate potential long-term soil erosion from the field. However, the USLE estimated soil erosion cannot be used to estimate the sediment delivered to the stream networks. For an effective erosion control, it is necessary to compute sediment delivery ratio (SDR) for watershed and sediment yield at watershed outlet. Thus, the Sediment Assessment Tool for Effective Erosion Control (SATEEC) was developed to compute the sediment yield at any point in watershed. In this study, the SATEEC was applied to the Sudong watershed, Chuncheon Gangwon to compare the sediment yield using area-based sediment delivery ratio (SDRA) and slope-based sediment delivery ratio (SDRS) at watershed outlet. The sediment yield using the SDRA by Vanoni, SYA and the sediment yield using the SDRS by Willams and Berndt, SYS were compared for the same sized watersheds. The 19 subwatersheds was 2.19 ha in size, the soil loss and sediment yield were estimated for each subwatershed. Average slope of main stream was about 0.86~3.17%. Soil loss and sediment yield using SDRA and SDRS were distinguished depending on topography, especially in steep and flat areas. The SDRA for all subwatersheds was 0.762, however the SDRS were estimated in the range of 0.553~0.999. The difference between SYA and SYS was -79.74~27.45%. Thus site specific slope-based SDR is more effective in sediment yield estimation than area-based SDR. However it is recommended that watershed characteristic need to be considered in estimating yield behaviors.

Effects of Soil Water Potential and Nitrogen Fertilization on Characteristics of Photosynthesis and Chlorophyll Fluorescence Induction in Schisandra chinensis Baillon

  • Seo, Young-Jin;Kim, Beung-Sung;Lee, Jong-Phil;Kim, Jong-Su;Park, Kee-Choon;Park, Chun-Geun;Ahn, Young-Sup;Cha, Seon-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.705-711
    • /
    • 2015
  • Management of soil water and fertilization is known to primarily affect physiological properties and yield in plant. The effect of soil water potential and nitrogen application on characteristics of photosynthesis and chlorophyll fluorescence in Schisandra chinensis Baillon was investigated on a sandy loam soil. Net photosyntheis rate and transpiration rate increased as a photon flux density and was highest at -50kPa of soil water potential. Light compensation point ($1.5{\mu}molm^{-1}s^{-1}$) and dark respiration ($0.13{\mu}molCO_2m^{-1}s^{-1}$) was lowest at -50 kPa but maximum photosynthesis rate ($13.10{\mu}molCO_2m^{-1}s^{-1}$) and net apparent quantum yield ($0.083{\mu}molCO_2m^{-1}s^{-1}$) was highest at -50 kPa. As results of chlorophyll fluorescence by OJIP analysis, maximum quantum yield (Fv/Fm) of photosystem II (PSII) and PIabs was higher in treatments of -50 kPa and -60 kPa respectively, which reflects the relative reduction state of PSII. But the relative activities per reaction center such as ABS/RC and DIo/RC were low with decreasing soil water potential. Net photosyntheis rate and transpiration rate were highest at treatment of soil testing 1.0 times ($92kgha^{-1}$). Application of nitrogen resulted in high Fv/Fm, $PI_{abs}$ and low ABS/RC, DIo/RC. This result implies that -50 kPa of soil water potential and nitrogen fertilizer may improve the efficiency of photosynthesis through controlling a photosystem in Schisandra chinensis Baillon.

Biological Yielding Potential of Rice in Association with Climatic Factors in Yeongnam Region (영남지역 기상과 수도의 한계생산력 해석)

  • Kim, Soon-Chul;Lee, Soo-Kwan;Chung, Geun-Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.3
    • /
    • pp.259-270
    • /
    • 1985
  • Meteorological year variations for rice crop from 1973 to 1984 were compared by using air temperature and sunshine hour for nursery period, cooling index for reproductive stage and meteorological yield productivity index for ripening period. The most optimum transplanting date and heading date for crop yield based on real transplanting date-grain yield relationship or heading date-grain yield relationship, meteorological yield productivity index and actual results showed good agreement each other. Around May 26 for transplanting and August 10 for heading were the most optimum date in Indica/Japonica hybrid cultivars while these were about June 8 and August 23 for Japonica cultivars, respectively. On the other hand, theoretical late limiting heading date for safe ripening were August 20 for Indica/Japonica hybrid cultivars and August 30 for Japonica cultivars, respectively, for both methods, cumulative temperature method during ripening with 80% believable frequency and meteorological yield productive index method having 1000(kg/10a) yielding potential. Based on the yield forecast trial, the highest values of photosynthetic efficiency, 2.5%, and crop growth rate, 23g/㎡/day, were recorded during 30 days before rice heading. Considering the photosynthetic efficiency and solar radiation, the potential crop growth rate was more or less 30g/㎡/day and the biological grain yielding potential in a existing cultural practices was approximately 900-1000(kg/10a) in Milyang weather condition. To increase further yielding potential, either photosynthetic efficiency or harvest index or both should be improved by manipulating appropriate canopy architecture, plant spacing, fertilizer, chemical, etc.

  • PDF

Long Range Forecast of Garlic Productivity over S. Korea Based on Genetic Algorithm and Global Climate Reanalysis Data (전지구 기후 재분석자료 및 인공지능을 활용한 남한의 마늘 생산량 장기예측)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Kim, Yong Seok;Hur, Jina;Kang, Mingu;Choi, Won Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.391-404
    • /
    • 2021
  • This study developed a long-term prediction model for the potential yield of garlic based on a genetic algorithm (GA) by utilizing global climate reanalysis data. The GA is used for digging the inherent signals from global climate reanalysis data which are both directly and indirectly connected with the garlic yield potential. Our results indicate that both deterministic and probabilistic forecasts reasonably capture the inter-annual variability of crop yields with temporal correlation coefficients significant at 99% confidence level and superior categorical forecast skill with a hit rate of 93.3% for 2 × 2 and 73.3% for 3 × 3 contingency tables. Furthermore, the GA method, which considers linear and non-linear relationships between predictors and predictands, shows superiority of forecast skill in terms of both stability and skill scores compared with linear method. Since our result can predict the potential yield before the start of farming, it is expected to help establish a long-term plan to stabilize the demand and price of agricultural products and prepare countermeasures for possible problems in advance.

Biochemical Methane Potential and Biodegradability of Animal Manure and Cultivated Forage Crops at the Reclaimed Tideland (가축분뇨와 간척지 사료작물의 메탄발생량과 생분해도)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.56-64
    • /
    • 2008
  • Anaerobic biodegradability (AB), which can be determined with the ultimate methane yield by the decomposition of organic materials, is one of the important parameters for the design and the operation of anaerobic digestion plant. In this study, Biochemical methane potential (BMP) test has been carried out to evaluate the methane yields of animal manures such as pig and cattle slurries, and different forage crops cultivated at the reclaimed tideland such as maize, sorghum, barley, rye, Italian ryegrass (IRG), rape, rush, and waste sludge produced from slaughterhouse wastewater treatment plant (SSWTP). In the ultimate methane yield and biodegradability of animal manure, those of pig slurry were 345 $mlCH_4/gVS_{fed}$ and 44.7% higher than 247 $mlCH_4/gVS_{fed}$ and 46.4% of cattle slurry (Cat. 2). The ultimate methane yield and biodegradability of spike-crop rye (Rye 1) were 442.36 $mlCH_4/gVS_{fed}$ and 86.5% the highest among different forage crops, those of the other forage crops ranged from 306.6 to 379 $mlCH_4/gVS_{fed}$ of methane yield with the AB having the range of about 60 to 77%. Therefore the forage crops could be used as a good substrate to increase the methane production and to improve the biodegradability in anaerobic co-digestion together with animal manure.

  • PDF

The Potential of Mulberry (Morus alba) as a Fodder Crop: The Effect of Plant Maturity on Yield, Persistence and Nutrient Composition of Plant Fractions

  • Saddul, D.;Jelan, Z.A.;Liang, J.B.;Halim, R.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1657-1662
    • /
    • 2004
  • The forage potential of mulberry (Morus alba) was evaluated under Malaysian conditions. The yield and nutrient composition of plant fractions of mulberry (whole plant, leaf and stem fractions) were determined at four harvest stages, namely, 3 (W3), 5 (W5), 7 (W7) and 9 (W9) weeks in a randomized block design. The study was conducted over a 9-month period to assess the persistence of the crop to repeated harvests. Fresh and dry matter (DM) yields of all plant fractions increased significantly (p<0.01) with increasing intervals between harvests, with highest DM yields at W9. The leaf to stem ratio declined significantly (p<0.01) from 5.2 (W3) to 0.9 (W9), indicating predominance of the stem fraction with advancing maturity. The nutritional composition of plant fractions was also significantly influenced (p<0.01) by advancing plant maturity at harvest. Crude protein (CP), ash and the metabolisable energy content of plant fractions declined significantly (p<0.01) from W3 to W9, while there was a corresponding significant increase (p<0.01) in the acid detergent fibre, neutral detergent fibre and acid detergent lignin. From this study it was concluded that the optimum stage to harvest the whole plant is 5 weeks, which is a compromise between yield, nutrient composition (CP and fibre components), and the annual number of cuts, with good crop persistence to repeated harvests. Fresh mulberry whole plant can provide a valuable supplemental source of nutrients to poor quality basal diets.

Methane Production Potential of Food Waste and Food Waste Mixture with Swine Manure in Anaerobic Digestion

  • Islam, Mohammad Nazrul;Park, Keum-Joo;Yoon, Hyung-Sun
    • Journal of Biosystems Engineering
    • /
    • v.37 no.2
    • /
    • pp.100-105
    • /
    • 2012
  • Purpose: Methane production potential in aerobic digestion was assessed according to feed to inoculum (F/I) ratio for food waste only, and mixing ratio of two materials for food waste and swine manure to give a basic data for the design of anaerobic digestion system. Methods: Anaerbic digestion test was performed using a lab scale batch reactor at $35^{\circ}C$ for six different feed to inoculum (F/I) ratios (0.50, 0.72, 1.14, 1.50, 2.14 and 3.41), three food waste to swine manure ratios (100:0, 60:40 and 40:60) with two different loading concentrations (10g VS/L and 30g VS/L). Results: For food waste only, the highest biogas yield of 1008 mL/gVS was obtained at 0.50 of F/I. For the co-digestion of food waste and swine manure mixture, the highest biogas yield of 1148 mL/gVS was obtained at a mixing ratio of 40:60 with loading concentration of 10g VS/L. Conclusions: F/I ratio for the food waste only, mixing ratio of food waste and swine manure, and co-substrate loading rate affected the biogas production rate. For the low loading rate, there was not so much difference according to the mixing ratio of food waste and swine manure, but for the high loading rate higher biogas yield was acquired for the co-digestion of food waste and swine manure than for the food waste alone (mixing ratio, 100:0).

Medium Concentration Influencing Growth of the Entomopathogenic Nematode Heterorhabditis bacteriophora and its Symbiotic Bacterium Photorhabdus luminescens

  • Yoo, Sun-Kyun;Brown, Ian;Cohen, Nancy;Gaugler, Randy
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.644-648
    • /
    • 2001
  • The biological control potential of entomopathogenic nematodes (EPN) can be enhanced by improved culture efficiency. Optimization of the media is a key factor for improving in vitro mass production of entomopathogenic nematodes. This study reports the effect of medium concentration. The medium is a combination of carbohydrates, lipids, proteins, sats, and growth factors, on the growth of Heterorhabditis bacteriophora and its symbiotic bacterium Photorhabdus liminescens. The overall optimal medium concentration for nematode recovery, hermaphrodite size, bacterial mass, infective juveniles (IJs) yield, and doubling time was 84 g/l. At this concentration rate, the doubling time of IJs production and the biomass of symbiotic bacteria was 1.6 days and 12.8 g/l, respectively. The maximum yield of $2.4{\times}{10^5}IJs/ml$ was attained within a one-generation cycle (eight days). The yield coefficient was $2.8{\times}{10^6}$ IJs/g medium, and the maximum productivity was $3.1{\times}{10^7}$ IJs per day. Medium concentration affected two independent factors, recovery and hermaphrodite size, which in turn influenced the final yield.

  • PDF