• Title/Summary/Keyword: Potato cultivation

Search Result 199, Processing Time 0.037 seconds

Production of Toxin Protein by Recombinant Escherichia coli with a Thermally Inducible Expression System

  • Jong, Se-Han;Chang, Ho-Nam;Chang, Yong-Keun;Rhim, Seong-Lyul
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.451-455
    • /
    • 1996
  • Physiological studies on the expression of Bacillus thuringiensis subsp. tenebrionis (Btt) gene coding for insecticidal protein in recombinant Escherichia coli 537 were carried out to identify optimal culture condition. It was necessary to shift culture temperature from 30 to $42^{\circ}C$ to express the gene. Expression of the Btt toxin gene by recombinant E. coli 537 began within one hour after induction. Complex nitrogen sources increased production of the insecticidal protein. The total insecticidal protein was 0.5 g/I when using yeast extract as a complex nitrogen source. Soybean hydrolysate showed apparently the highest induction efficiency. After induction, the cellular content of the insecticidal protein was 5.4 times higher than it had been before induction. The optimal cultivation strategy was found to grow cells for 7hours at $30^{\circ}C$ and then 5-8 hours at $42^{\circ}C$. The optimal cultivation pH for the production of insecticidal protein was 6.5. The Btt toxin produced by the recombinant E. coli 537 was found to have the same level of potency against Colorado potato beetle as the original toxin.

  • PDF

Selection of Effective Fungicides Against Xylogone sphaerospora, a Fungal Pathogen of Cultivated Mushroom, Ganoderma lucidum (영지 노랑병 방제에 효과적인 살균제의 선발)

  • 최경자;이종규;우성희;조광연
    • Korean Journal Plant Pathology
    • /
    • v.14 no.5
    • /
    • pp.491-495
    • /
    • 1998
  • A fungal disease of the cultivated mushroom, Ganoderma lucidum, caused by Xylogone sphaerospora was epidemic throughout all cultivation areas in Korea which caused a lot of yield losses in the mushroom production. For controlling the disease, the screening of effective fungicides against the pathogenic fungus were conducted. Thirty seven commercially available fungicides were tested for their inhibitory activities on potato dextrose agar media supplemented with these fungicides at various concentrations. Twenty one fungicides significantly inhibited mycelial growth of the pathogen, Xylogone sphaerospora, but 16 fungicides had no inhibitory effect. Among these 21 fungicides, 17 fungicides also inhibited mycelial growth of Ganoderma lucidum as well, but imazalil, procymidone, triforine, and vinclozolin had no inhibitory effects. However, vinclozolin showed no inhibitory effect on mycelial growth of the mushroom even at the concentration of 50 $\mu\textrm{g}$/ml vinclozolin solution for 2 hours, and then the pathogen was inoculated. After two month-cultivation of the mushroom, over 90% of logs treated with vinclozolin without pathogen inoculation produced fruiting bodies. However, fruiting bodies were not produced form the logs inoculated with the pathogen, but not treated with vinclozolin. Fifty seven percent of logs. which were pre-treated with vinclozolin and then inoculated with the pathogen produced fruiting bodies. Based on the results, vinclozolin is effective for the control of yellow disease of the Ganoderma lucidum caused by Xylogone sphaerospora.

  • PDF

The Effect of Nutrient Solution Concentration on Growth of Potato Plantlet in Microponic System (Microponic system에서 배양액의 농도변화가 감자 소식물체 생육에 미치는 영향)

  • Ko, Sun A;Choi, Ki Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.23 no.2
    • /
    • pp.144-147
    • /
    • 2014
  • It was intended to closely examine an effect that a change in the concentration of culture medium had on the potato(Solanum tuberosum L.) plantlet growth in the microponic system so as to mass-produce the virus-free plant of new variety 'Saebong' for potato processing. The adjusted concentration of potato culture medium was 0.2, 0.6, 1.0, 1.4, 1.8, and $14.0dS{\cdot}m^{-1}$. And potato seedling was cut into pieces of 1.5 cm in length, which included 2 growth points and leaves. And each was explanted in glass vial of 50 mL. And experiments were carried out twice for 18 days or 21days. Culture medium of 2ml was put in the container respectively. And 1 mL was added after 10 days. And in terms of cultivation environment, the experiment was carried out at the day length of 16 hours at the temperature of $23{\pm}1^{\circ}C$ under the white LED light of $40{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The concentration of culture medium in the experiment I was EC 0.2, 1.0, $14dS{\cdot}m^{-1}$ and was adjusted to 0.6, 1.0, 1.4, $1.8dS{\cdot}m^{-1}$ in the experiment II. The results showed that the survival rate of plantlet was 90% at $0.2dS^2m^{-1}$, 100% at $0.6dS^2m^{-1}$, 100% at $1.0dS^2m^{-1}$. 0% at $1.4dS{\cdot}m^{-1}$, 0% at $1.8dS{\cdot}m^{-1}$. and 0% at $14.0dS{\cdot}m^{-1}$ after 7 days. With regard to the explanted potato seedling, in case of the treatment where the electrical conductivity of culture medium was adjusted to $1.0dS{\cdot}m^{-1}$, root developed 2 days after transplantation. And the plantlet vigorously grew into strong plant that had 7 leaves, length of 5cm, and fresh weight of 0.5 g after 18 days. In case of the treatment where the concentration of culture medium was adjusted to $0.6dS{\cdot}m^{-1}$, the root plantlets developed 4 days after transplantation. And those grew into plant that had 7 leaves and fresh weight of 0.2 g after 21 days. Therefore, we found that it is effective to control potato culture medium by adjusting its electrical conductivity to $0.6{\sim}1.0dS{\cdot}m^{-1}$ for the mass production of virus-free potato seedling in the microponic system.

Bio-Degradable Plastic Mulching in Sweetpotato Cultivation (생분해성 멀칭필름을 이용한 고구마 재배)

  • Lee, Joon-Seol;Jeong, Kwang-Ho;Kim, Hag-Sin;Kim, Jeong-Ju;Song, Yeon-Sang;Bang, Jin-Ki
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.2
    • /
    • pp.135-142
    • /
    • 2009
  • This experiment was conducted to determine the usability of biodegradable plastic in the mulching cultivation of sweetpotato. For this, we investigated the physical characteristics, biodegradability, leaching, yield, workability, etc. of biodegradable films. Compared with general mulching materials, biodegradable Poly butyleneadipate-co-butylene succinate (PBSA) and PLC+starch showed $2{\sim}27$% higher tensile strength, but $2{\sim}22$% lower elongation and $2{\sim}6$% lower tear strength. In the leaching test on the biodegradable films, heavy metals were detected very little or not at all. As to difference in ground temperature according to mulching material, the temperature was high in order of PLC+starch > PBSA > Low Density Polyethylene (LDPE) > Control during the period from late June to mid July, but in order of LDPE > PLC+starch > PBSA > None during the period from late July to late September. In the mulching cultivation of sweet potato, biodegradable films PBSA (EA, EB, EC) and PLC+starch (DD, DE, DF) began to degrade after 60 days from the cut planting of sweet potato, and over 95% degraded after 120 days. The quantity of roots was 3,070 kg/10a for PBSA, 3,093 kg/10a for PLC-starch, and 2,946 kg/l10a for LDPE, showing no significant difference according to mulching material. Considering the physical characteristics, biodegradability, environment, convenience in harvesting work, yield, etc. of the films in the mulching cultivation of sweet potato, biodegradable films are expected to be very useful.

Isolation and Characterization of Airborne Mushroom Damaging Trichoderma spp. from Indoor Air of Cultivation Houses Used for Oak Wood Mushroom Production Using Sawdust Media

  • Kim, Jun Young;Kwon, Hyuk Woo;Lee, Dong Hyeung;Ko, Han Kyu;Kim, Seong Hwan
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.674-683
    • /
    • 2019
  • Some species of the Trichoderma genus are reported as the major problem in oak wood mushroom production in Korea. In spite of economic loss by the fungi, scientific information on airborne Trichoderma species is not much available. To generate information for disease management development we analyzed airborne Trichoderma. A total of 1,063 fungal isolates were purely obtained from indoor air sampling of cultivation houses used for oak wood mushroom using sawdust media. Among the obtained isolates, 248 isolates were identified as Trichoderma fungi including T. harzianum, T. atroviride, T. citrinoviride, and T. pseudokoningii, by morphological and molecular analysis. T. harzianum was dominant among the four identified species. All the four Trichoderma species grew fast on solid nutrient media tested (potato dextrose agar [PDA], malt extract agar [MEA], Czapek's Dox + yeast extract agar [CYA] and cornmeal dextrose agar). Compact mycelia growth and mass spore production were better on PDA and CYA. In addition, T. harzianum and T. citrinoviride formed greenish and yellowish mycelium and spores on PDA and CYA. Greenish and yellowish pigment was saturated into PDA only by T. pseudokoningii. These four Trichoderma species could produce extracellular enzymes of sawdust substrate degradation such as β-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease. Their mycelia inhibited the growth of oak wood mushroom mycelia of two tested cultivars on dual culture assay. Among of eleven antifungal agents tested, benomyl was the best to inhibit the growth of the four Trichoderma species. Our results demonstrate that the airborne Trichoderma fungi need to be properly managed in the cultivation houses for safe mushroom production.

Roles of Ascospores and Arthroconidia of Xylogone ganodermophthora in Development of Yellow Rot in Cultivated Mushroom, Ganoderma lucidum

  • Kang, Hyo-Jung;Chang, Who-Bong;Yun, Sung-Hwan;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.138-147
    • /
    • 2011
  • Xylogone ganodermophthora, an ascomycetous fungus, is known to cause yellow rot in the cultivated mushroom Ganoderma lucidum. In this study, we investigated the dissemination of this fungal pathogen in G. lucidum grown in cultivation houses. To determine the role of ascospores produced by X. ganodermophthora in disease development, we constructed a green fluorescent protein-labeled transgenic strain. This X. ganodermophthora strain produced a number of ascomata in the tissues of oak logs on which G. lucidum had been grown and on the mushroom fruit bodies. However, the ascospores released from the ascomata were not able to germinate on water agar or potato dextrose agar. Moreover, less than 0.1% of the ascospores showed green fluorescence, indicating that most ascospores of X. ganodermophthora were not viable. To determine the manner in which X. ganodermophthora disseminates, diseased oak logs were either buried in isolated soil beds as soil-borne inocula or placed around soil beds as air-borne inocula. In addition, culture bottles in which G. lucidum mycelia had been grown were placed on each floor of a five-floor shelf near X. ganodermophthora inocula. One year after cultivation, yellow rot occurred in almost all of the oak logs in the soil beds, including those in beds without soil-borne inocula. In contrast, none of the G. lucidum in the culture bottles was infected, suggesting that dissemination of X. ganodermophthora can occur via the cultivation soil.

Antioxidant Compounds and Antioxidant Activities of Sweet Potatoes with Cultivated Conditions (재배조건에 따른 고구마의 항산화성분 및 항산화활성)

  • Woo, Koan-Sik;Seo, Hye-In;Lee, Yong-Hwan;Kim, Hyun-Young;Ko, Jee-Yeon;Song, Seuk-Bo;Lee, Jae-Saeng;Jung, Ki-Yuol;Nam, Min-Hee;Oh, In-Seok;Jeong, Heon-Sang
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.4
    • /
    • pp.519-525
    • /
    • 2012
  • Effects of cultivated conditions on antioxidant compounds and antioxidant activities of sweet potatoes (Ipomoea batatas (L.) Lam) were determined. The cultivated variety was Shinyulmi, and they were cultivated in a conventional culture, successful cropped hairy vetch culture, successful cropped barley cultivation, successful cropped rye cultivation, successful cropped mix-seeding of hairy vetch and barley, successful cropped mix-seeding of hairy vetch and rye, and not fertilizer. The brix degree, moisture, protein, and ash content of the sweet potatoes did not significantly change with the cultivated conditions. However amylose, total dietary fiber, and mineral content had significant changes. The total polyphenol, flavonoid, and tannin content of the methanolic extracts of the sweet potato's pericarp showed significant differences from cultivated conditions, however, the sweet potato's sarcocarp did not significantly change. The highest DPPH and ABTS radical scavenging activities of the methanolic extracts of the sweet potatoes were 958.81 and 663.53 mg TE/100 g in the sweet potato's pericarp on the successful cropped hairy vetch culture. Generally, there was a difference in antioxidant compound content and radical scavenging activity on the methanolic extract of sweet potato with cultivated conditions.

Emission of Green House Gases in the Agricultural Environment -1. The Cropping System and Emission of the Green House Gases-CO2, CH4, N2O)-under Different Cropping System (농작물(農作物) 재배환경(栽培環境)과 지구온난화(地球溫暖化) 원인(原因)가스 발생(發生) -1. 답전전환시(畓田轉換時) 작부체계(作付體系)와 지구온난원인기체(地球溫暖原因氣體) -이산화탄소(二酸化炭素), 메탄, 아산화질소(亞酸化窒素)- 발생(發生))

  • Lee, Sang-Kyu;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.1
    • /
    • pp.49-56
    • /
    • 1993
  • The net flux of global green house gases such as carbon dioxide($CO_2$), methane($CH_4$), and nitrous oxide($N_2O$) emitted from the rotation of paddy-upland soil during growing sesaon under different cropping system was determined. The results obtained were summarized as follows : 1. The net flux of $CO_2$ during the growing season was the highest from continuous cultivation of rice but the lowest from rotation cultivation of rice-soybean. Under the different cropping system the highst emission was from soil of continuous cultivation of rice, but the lowest from converted system. 2. The net emission of methane was the highest from the sold of continuous cultivation of rice, but the flux was remarkably decreased by differing the cropping system. 3. $N_2O$ was emitted greatly from the every two year rotation of potato-chinese cabbage and the next rank was from continuous cultivation of rice, but was decreased notably from rotation cultivation of rice-soybean and potato-chinese cabbage under rotation of paddy-upland cropping system. 4. The ratio of oxygen and carbon dioxide in the soil air was much different with glowing season, the ratio was varied with 4~10 percents for oxygen and 1~22 percents for carbon dioxide. The ratio of carbon dioxide was dozens or hundreds times to that of air, and the variation was very high also. 5. The emission of global green house gases such as carbon dioxide, methane and nitrous oxide was affected by the moisture, temperature and nutrients of soils and the growth period of crops.

  • PDF

The Influence of Soil Characteristics and Sweet Potato (Ipomoea batatas L.) Varieties on Fiber Content (재배지역 토양특성과 고구마 품종의 섬유질 함량 차이)

  • Park, Won;Chung, Mi Nam;Lee, Hyeong-Un;Kim, Tae Hwa;Kim, Su Jung;Nam, Sang Sik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.3
    • /
    • pp.172-179
    • /
    • 2022
  • Sweet potato varieties with high fiber content in the storage root have poor texture when steamed or roasted. This study investigates the difference in fiber content among sweet potato varieties by soil and climate. The average fiber content of 'Hogammi', 'Sodammi', 'Pungwonmi', 'Danjami', and 'Jinyulmi' cultivars from the samples collected at farms in Haenam, Muan, and Unbong, Korea were 95.71, 66.73, 44.55, 40.55, and 38.53 mg/100g FW, respectively. There was no significant difference between site-specific conditions and varieties. Based on the degree of visual fibrousness, 'Hogammi' has an average of 3.6-4.0 with many thick stringy fibers. The fiber content of the 'Hogammi' cultivar was measured across 19 sites representing the main sweet potato growing regions of Korea. The fiber content was between 115.82 and 114.6 mg/100g in Haenam 2 and Boryeong 1, and 87.46 mg/100g in Hamyang. However, the fiber content at the remaining 16 sites was within the range of 94.63-108.52 mg/100g, although there were some site-level differences. The fiber content of the sweet potato storage roots were positively correlated with soil phosphorus (R2 = 0.58**), organic matter (R2 = 0.52*), and pH (R2 = 0.51*), which had a significance of 1% and 5%. The fiber content of sweet potato storage roots was found to have increased with increasing phosphorus content, organic matter and pH in the soil. However, there was no correlation with the amount of precipitation, days of precipitation and hours of sunshine with the fiber content of sweet potato at the selected sites.

Enhanced Tolerance to Oxidative Stress of Transgenic Potato (cv. Superior) Plants Expressing Both SOD and APX in Chloroplasts (SOD와 APX를 동시에 엽록체에 발현시킨 형질전환 감자 (cv. Superior)의 산화스트레스 내성 증가)

  • Tang, Li;Kwon, Suk-Yoon;Kim, Myoung-Duck;Kim, Jin-Seog;Kwak, Sang-Soo;Lee, Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.34 no.4
    • /
    • pp.299-305
    • /
    • 2007
  • Oxidative stress is a major damaging factor for plants exposed to environmental stresses. Previously, we have generated transgenic potato (cv. Superior) plants expressing both CuZnSOD and APX genes in chloroplast under the control of an oxidative stress-inducible SWPA2 promoter (referred to as SSA plants) and selected the transgenic potato plant lines with tolerance against methyl viologen (MV)-mediated oxidative stress. When leaf discs of SSA plants were subjected to $3{\mu}M$ methyl viologen (MV), they showed approximately 40% less damage than non-transgenic (NT) plants. SSA plantlets were treated with $0.3{\mu}M$ MV stress, SSA plants also exhibited reduced damage in root growth. When 350 MV was sprayed onto the whole plants, SSA plants showed a significant reduction in visible damage, which was approximately 75% less damage than leaves of NT plants. These plants will be used for further analysis of tolerance to environmental stresses, such as high temperature and salt stress. These results suggest that transgenic potato (cv. Superior) plants would be a useful plant crop for commercial cultivation under unfavorable growth conditions.