DOI QR코드

DOI QR Code

Isolation and Characterization of Airborne Mushroom Damaging Trichoderma spp. from Indoor Air of Cultivation Houses Used for Oak Wood Mushroom Production Using Sawdust Media

  • Kim, Jun Young (Department of Microbiology and Institute of Basic Sciences, Dankook University) ;
  • Kwon, Hyuk Woo (Department of Microbiology and Institute of Basic Sciences, Dankook University) ;
  • Lee, Dong Hyeung (Department of Microbiology and Institute of Basic Sciences, Dankook University) ;
  • Ko, Han Kyu (Forest Mushroom Research Center, National Forest Cooperative Federation) ;
  • Kim, Seong Hwan (Department of Microbiology and Institute of Basic Sciences, Dankook University)
  • Received : 2019.10.13
  • Accepted : 2019.10.28
  • Published : 2019.12.01

Abstract

Some species of the Trichoderma genus are reported as the major problem in oak wood mushroom production in Korea. In spite of economic loss by the fungi, scientific information on airborne Trichoderma species is not much available. To generate information for disease management development we analyzed airborne Trichoderma. A total of 1,063 fungal isolates were purely obtained from indoor air sampling of cultivation houses used for oak wood mushroom using sawdust media. Among the obtained isolates, 248 isolates were identified as Trichoderma fungi including T. harzianum, T. atroviride, T. citrinoviride, and T. pseudokoningii, by morphological and molecular analysis. T. harzianum was dominant among the four identified species. All the four Trichoderma species grew fast on solid nutrient media tested (potato dextrose agar [PDA], malt extract agar [MEA], Czapek's Dox + yeast extract agar [CYA] and cornmeal dextrose agar). Compact mycelia growth and mass spore production were better on PDA and CYA. In addition, T. harzianum and T. citrinoviride formed greenish and yellowish mycelium and spores on PDA and CYA. Greenish and yellowish pigment was saturated into PDA only by T. pseudokoningii. These four Trichoderma species could produce extracellular enzymes of sawdust substrate degradation such as β-glucosidase, avicelase, CM-cellulase, amylase, pectinase, xylanase, and protease. Their mycelia inhibited the growth of oak wood mushroom mycelia of two tested cultivars on dual culture assay. Among of eleven antifungal agents tested, benomyl was the best to inhibit the growth of the four Trichoderma species. Our results demonstrate that the airborne Trichoderma fungi need to be properly managed in the cultivation houses for safe mushroom production.

Keywords

References

  1. Benitez, T., Rincon, A. M., Limon, M. C. and Codon, A. C. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7:249-260.
  2. Bodine, D. 1995. Trichoderma disease management seminars. Mushroom News 43:14-20.
  3. Chiba, M. and Cherniak, E. A. 1978. Kinetic study of reversible conversion of methyl 1-(butylcarbamoyl)-2-benzimidazolecarbamate (benomyl) to methyl 2-benzimidazolecarbamate (MBC) and butyl isocyanate (BIC) in organic solvents. J. Agric. Food Chem. 26:573-576. https://doi.org/10.1021/jf60217a015
  4. Danielson, R. M. and Davey, C. B. 1973. The abundance of Trichoderma propagules and the distribution of species in forest soils. Soil Biol. Biochem. 5:485-494. https://doi.org/10.1016/0038-0717(73)90038-2
  5. Davidse, L. C. 1986. Benzimidazole fungicide: mechanism of action and biological impact. Annu. Rev. Phytopathol. 24:43-65. https://doi.org/10.1146/annurev.py.24.090186.000355
  6. Dees, P. M. and Ghiorse, W. C. 2001. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNA sequences from cultivated isolates and extracted DNA. FEMS Microbiol. Ecol. 35:207-216. https://doi.org/10.1111/j.1574-6941.2001.tb00805.x
  7. Domsch, K. H., Gams, W. and Anderson, T. H. 1980. Compendium of soil fungi. Academic Press, London. pp. 809.
  8. Eveleigh, D. E. 1985. Trichoderma. In: Biology of industrial microorganisms, eds. by A. L. Demain and N. A. Solomon, pp. 487-509. Benjamin Cummings Publishing Co., Melano Park, CA, USA.
  9. Gams, W. and Bissett, J. 1998. Morphology and identification of Trichoderma. In: Trichoderma and Gliocladium. Vol. 1, eds. by C. P. Kubicek and G. E. Harman, pp. 1-34. Taylor & Francis, London, UK.
  10. Huang, D. B., Deng, M. H., Gao, C. X., He, X. J. and Gao, X. N. 1988. Study on the control of molds on Lentinus edodes. Fujian Agric. Sci. Technol. 4:16-18.
  11. Ishikawa, H., Nagao, M., Oki, T. and Kawabe, K. 1980. Physiological changes in Lentinus edodes (Berk.) Sing. mycelia induced by Trichoderma metabolites. Rep. Tottori Mycol. Inst. 18:197-204.
  12. Jaklitsch, W. M. 2009. European species of Hypocrea Part I. The green-spored species. Stud. Mycol. 63:1-91. https://doi.org/10.3114/sim.2009.63.01
  13. Jandaik, S. and Guleria, D. S. 1999. Yield loss in Agaricus bisporus due to Trichoderma sp. infection. Mushroom Res. 8:43-46.
  14. Kawamura, N., Nakamura, Y. and Goto, M. 1980. Relationship between resistance of Lentinus edodes to Hypocrea muroiana and components of culture media. Rep. Tottori Mycol. Inst. 18:205-216.
  15. Kim, C. S., Park, M. S., Kim, S. C., Maekawa, N. and Yu., S. H. 2012a. Identification of Trichoderma, a competitor of shiitake mushroom (Lentinula edodes), and competition between Lentinula edodes and Trichoderma species in Korea. Plant Pathol. J. 28:137-148. https://doi.org/10.5423/PPJ.2012.28.2.137
  16. Kim, J. Y., Kwon, H. W., Tang, L. and Kim, S. H. 2012b. Identification and characterization of Trichoderma citrinoviride isolated from mushroom fly-ingested oak log beds used for shiitake cultivation. Plant Pathol. J. 28:219. https://doi.org/10.5423/PPJ.2012.28.2.219
  17. Kim, J. Y., Kwon, H. W., Yun, Y. H. and Kim, S. H. 2016. Identification and characterization of Trichoderma species damaging shiitake mushroom bed-logs infested by Camptomyia pest. J. Microbiol. Biotechnol. 26:909-917. https://doi.org/10.4014/jmb.1602.02012
  18. Kim, J. Y., Yun, Y. H., Hyun, M. W., Kim, M. H. and Kim, S. H. 2010. Identification and characterization of Gliocladium viride isolated from mushroom fly infested oak log used for shiitake cultivation. Mycobiology 38:7-12. https://doi.org/10.4489/MYCO.2010.38.1.007
  19. Kim, S. H., Uzunovic, A. and Breuil, C. 1999. Rapid detection of Ophiostoma piceae and O. quercus in stained wood by PCR. Appl. Environ. Microbiol. 65:287-290. https://doi.org/10.1128/aem.65.1.287-290.1999
  20. Komon-Zelazowska, M., Bissett, J., Zafari, D., Hatvani, L., Manczinger, L., Woo, S., Lorito, M., Kredics, L., Kubicek, C. P. and Druzhinina, I. S. 2007. Genetically closely related but phenotypically divergent Trichoderma species causes green mold diseases in oyster mushroom farms worldwide. Appl. Environ. Microbiol. 73:7415-7426. https://doi.org/10.1128/AEM.01059-07
  21. Korea Forest Service. 2017. Statistical Yearbook of Forestry. Korea Forest Service, Daejeon, Korea. 19 pp.
  22. Korea Rural Economic Institute. 2016. Forest observation (oak wood mushroom) results. Korea Rural Economic Institute, Naju, Korea.
  23. Laixuthai, N., Gaewgla, M. and Triratana, S. 1987. Study on contaminative fungi in shiitake substrate bags. In: Proceeding of the 25th Annual Conference on Plant Science, pp. 520-527. Kasetsart University, Bangkok, Thailand.
  24. Largeteau-Mamoun, M. L., Mata, G. and Savoie, J. M. 2002. Green mold disease: adaptation of Trichoderma harzianum Th2 to mushroom compost. In: Mushroom biology and mushroom products, eds. by J. E. Sanchez, G. Huerta and E. Mondel, pp. 179-187. Universidad Autonoma del Estado de Morelos, Cuernavaca, Mexico.
  25. Lee, B.-W. and Park, K.-M. 1998. Anti-tumor activity of proteinbound polysaccharides extracted from mycelia of Lentinus edodes. Korean J. Food Sci. Technol. 30:665-671.
  26. Lee, M. R., Oh, D. S., Wee, A. J., Yun, B. S., Jang, S. A. and Sung, C. K. 2014. Anti-obesity effects of Lentinus edodes on obese mice induced by high fat diet. J. Korean Soc. Food Sci. Nutr. 43:194-199. https://doi.org/10.3746/JKFN.2014.43.2.194
  27. Liao, Y.-M. 1993. Microorganisms contaminated in the process of cultivation and their effect on production of shiitake. J. Agric. Res. China 42:187-199.
  28. Lim, G., Lim, K. Y. and Tan, K. K. 1990. Fungal contaminants of shiitake "logs"in Singapore. Mushroom J. Trop. 10:101-104.
  29. Nanba, H., Mori, K., Toyomasu, T. and Kuroda, H. 1987. Antitumor action of shiitake (Lentinus edodes) fruit bodies orally administered to mice. Chem. Pharm. Bull. 35:2453-2458. https://doi.org/10.1248/cpb.35.2453
  30. Pukahuta, C., Limtong S., Suwanarit, P. and Nutalaya, S. 2000. Species diversity of Trichoderma contaminating shiitake production houses in Thailand. Kasetsart J. (Nat. Sci.) 34:478-485.
  31. Rifai, M. R. 1969. A Revision of the genus Trichoderma. Mycological papers, No. 16. Commonwealth Mycological Institute, Kew. 56 pp.
  32. Roiger, D. J., Jeffers, S. N. and Caldwell, R. W. 1991. Occurrence of Trichoderma species in apple orchard and woodland soils. Soil Biol. Biochem. 23:353-359. https://doi.org/10.1016/0038-0717(91)90191-L
  33. Samuels, G. J. 2006. Trichoderma: systematics, the sexual state, and ecology. Phytopathology 96:195-206. https://doi.org/10.1094/PHYTO-96-0195
  34. Statistics of Forest Product's Trade. 2018. Export status by country as of September 2019 (total). URL https://www.forest.go.kr/newkfsweb/kfi/kfs/soft/selectPrTradeList.do?mn=KFS_02_03_03_05_01 [10 September 2019].
  35. Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725-2729. https://doi.org/10.1093/molbev/mst197
  36. Tang, C. S., Yanagihara, K. and Zhang, Y. 1992. 1-Butyl isocyanate from Benlate formulations. Arch. Environ. Contam. Toxicol. 23:270-272. https://doi.org/10.1007/BF00212286
  37. Teather, R. M. and Wood, P. J. 1982. Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from bovine rumen. Appl. Environ. Microbiol. 43:777-780. https://doi.org/10.1128/aem.43.4.777-780.1982
  38. Togashi, I., Itoh, K., Gisusi, S. and Harada, A. 1997. Distribution of airborne fungi in fruiting houses for the sawdust-based cultivation of Lentinus edodes. J. Hokkaido For. Prod. Res. Inst. 11:1-4.
  39. Tokimoto, K. and Komatsu, M. 1979. Effect of carbon and nitrogen sources in media on the hypha interference between Lentinus edodes and some species of Trichoderma. Ann. Phytopathol. Soc. Jpn. 45:261-264. https://doi.org/10.3186/jjphytopath.45.261
  40. Wang, G., Cao, X., Ma, Z., Guo, M., Liu, C., Yan, L. and Bian, Y. 2016. Diversity and effect of Trichoderma spp. associated with green mold disease on Lentinula edodes in China. Mycobiology 5:709-718.
  41. Wuest, P. J., Anton, L. A. and Beyer, D. M. 1996. Mushroom crop losses associated with Trichoderma green mold when compost was infested prior to casing and the casing was CAC'd or deep-scratched. Mushroom Green Mold Round Table. Penn State University, State College, PA, USA. 43 pp.
  42. Yoon, J. H., Park, J. E., Suh, D. Y., Hong, S. B., Ko, S. J. and Kim, S. H. 2007. Comparison of dyes for easy detection of extracellulase in fungi. Mycobiology 35:21-24. https://doi.org/10.4489/MYCO.2007.35.1.021