• 제목/요약/키워드: Post structures

Search Result 943, Processing Time 0.022 seconds

Interpretation of High-resolution Seismic Data in the Middle Part of the Pungam Basin, Korea (풍암분지 중부지역의 고해상도 탄성파자료 해석)

  • Kim, Gi Yeong;Heo, Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.3
    • /
    • pp.201-208
    • /
    • 1999
  • A high-resolution seismic profile acquired across the middle part of the Pungam Basin, one of the Cretaceous sedimentary basins in Korea, has been interpreted to delineate subsurface geological structures. Boundary faults, intrusive bodies, and unconformity surfaces are identified on the seismic section. Basin fills are divided into five depositional units (Units I, II, III, IV, and V in descending order). The normal faults were formed by transtentional movement along a sinistral strike-slip fault zone. Unconsolidated sediments, a weathered layer, and sedimentary layers overly the Precambrian gneiss. The granite body intruded at the southeastern part contacts the adjacent sedimentary rocks by a near-vertical fault. Granitic intrusions caused tectonic fractures and normal faults of various sizes. An andesitic intrusive body indicates post-depositional magmatic intrusions. Continuous strike-slip movements have deformed basin-filling sediments (Units I and II).

  • PDF

Effect of Kinesiology Taping on Hyolaryngeal Complex Movement in Stroke Patient with Dysphagia

  • Hong, Junyong;Oh, Donghwan;Park, Jisu;Jung, Youngjin
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.11 no.2
    • /
    • pp.2052-2059
    • /
    • 2020
  • Background: Kinesiology taping (KT) is a method that helps immediately increase muscle activation, strength and joint stability by being attached to various skeletal muscles and structures of the body. Objectives: To investigate the effect of KT applied below the hyolaryngeal complex on the movement of the hyolaryngeal complex during swallowing in patients with dysphagia after stroke. Design: One-group, pre-post design. Methods: Twenty individuals with dysphagia after stroke participated in this study. KT was applied to the sternum and both clavicles from the hyolaryngeal complex. We analyzed the motion of the hyolaryngeal complex during swallowing with and placebo KT and KT using the Image-J software with videofluoroscopic swallowing study. In addition, a 0-to-10 numerical rating self-report scale was used to check the required effort and resistance felt during swallowing. Results: KT condition showed that the anterior and superior movement of the hyoid bone during swallowing was significantly lower than placebo KT (P<.05, all). Also, KT condition showed that the anterior and superior movement of the larynx during swallowing was significantly lower than placebo KT (P<.05, all). In result of statistical comparison between KT group and placebo KT group, the KT group showed significantly higher self-report scale score than the placebo KT group in terms of two category; the required effort and resistance felt (P<.05, all). Conclusion: This study demonstrated that KT applied below the hyolaryngeal complex inhibits the anterior and superior movement of hyoid bone and larynx during swallowing of patients with dysphagia after stroke.

Long-term radiographic evaluation of infrabony defect treated by flap operation (치주판막술에 의해 치료된 골연하 결손부의 장기적 방사선학적 변화 양사의 관찰)

  • Bae, Sang-Ryul;Park, Jin-Woo;Suh, Jo-Young;Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.3
    • /
    • pp.429-436
    • /
    • 2008
  • Purpose: The goal of periodontal regenerative therapy is to replace bone, cementum, and periodontal ligament on a previously diseased root surface, which has suffered the loss of these supporting structures. To accomplish the regeneration, a number of surgical procedures have been advocated throughout the years. There seems to be a potential for some spontaneous periodontal tissue regeneration in the bottom of periodontal defect following open flap debridement alone. The aim of this study was to analyse the radiographic bone changes over 2-year after flap operation. Material and Methods: Patients attending the department of periodontics of Kyungpook National University Hospital were studied. Patients had clinical and radiographic evidence of infrabony defect(s). forty two sites of 33 patients aged 26 to 65 (mean age 45.5) were treated by flap operation with or without osseous surgery. Baseline and over 2-year follow-up radiographs were collected and evaluated for this study. Radiographic assessment includes a bone fill, bone crest change, defect resolution, and % of defect resolution. Pre- and post-treatment differences between variables (maxilla and mandible, gender, defect depth, defect angle) using the paired t-test were examined. Result: We observed 0.74 mm of bone fill, 0.66 mm of crestal resorption, 1.40 mm of defect resolution, and 27% of percentage of defect resolution. Mandible, women, deeper initial defect depth, narrower initial defect angle showed greater bone fill, defect resolution, and % of defect resolution. Conclusion: The results of this study suggest that the use of flap operation did enhance the outcome in terms of radiographically detectable bone fill. Both treatment resulted in some loss of crestal bone height.

Relationship between hardness and plastically deformed structural steel elements

  • Nashid, Hassan;Clifton, Charles;Ferguson, George;Hodgson, Micheal;Seal, Chris;Choi, Jay-Hyouk
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.619-637
    • /
    • 2015
  • A field based non-destructive hardness method is being developed to determine plastic strain in steel elements subjected to seismic loading. The focus of this study is on the active links of eccentrically braced frames (EBFs). The 2010/2011 Christchurch earthquake series, especially the very intense February 22 shaking, which was the first earthquake worldwide to push complete EBF systems into their inelastic state, generating a moderate to high level of plastic strain in EBF active links for a range of buildings from 3 to 23 storeys in height. Plastic deformation was confined to the active links. This raised two important questions: what was the extent of plastic deformation and what effect does that have on post-earthquake steel properties? A non-destructive hardness test method is being used to determine a relationship between hardness and plastic strain in active link beams. Active links from the earthquake affected, 23-storey Pacific Tower building in Christchurch are being analysed in the field and laboratory. Test results to date show clear evidence that this method is able to give a good relationship between plastic strain and demand. This paper presents significant findings from this project to investigate the relationship between hardness and plastic strain that warrant publication prior to the completion of the project. Principal of these is the discovery that hot rolled steel beams carry manufacturing induced plastic strains, in regions of the webs, of up to 5%.

Effect of Thermal Imidization and Curing on Fluorescence Behavior of a Phenylethynyl-Terminated Poly(amic acid)

  • Cho, Donghwan;Yang, Gyeongmo;Drzal, Lawrence T.
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.297-302
    • /
    • 2003
  • The imidization and cure reaction of a thermosetting phenylethynyl-terminated amic acid (LaRC PETI-5) in film form have been monitored as a function of temperature by means of a steady-state fluorescence technique using a front-face illumination method. The variation of the fluorescence emission spectra of LaRC PETI-5 can be divided into four temperature regions; Region I: below 15$0^{\circ}C$, Region II: 150-25$0^{\circ}C$, Region III: 250-35$0^{\circ}C$, and Region IV: above 35$0^{\circ}C$. The fluorescence spectra in Region I are largely influenced by residual N-methyl-2pyrrolidinone in the polymer and also slightly by partial imidization of the polymer. There is a combined effect of imidization and solvent removal on the fluorescence behavior in Region II. The spectra in Regions III and IV are due significantly to the cure reaction of LaRC PETI-5 and to a post-cure effect of the polyimide, respectively. This spectroscopic evidence indicating the transformation of the amic acid imide oligomer into the corresponding polyimide via imidization and cure, agrees well with thermal analysis results obtained previously. The intermediate stage of cure in the range of 250-30$0^{\circ}C$ predominantly influences the change of the fluorescence intensity. The later stage above 30$0^{\circ}C$ significantly influences the position of the spectrum. This fluorescence study also supports the mechanism proposed in earlier work that the crosslinking reaction takes place at the reaction sites in the conjugated polyene and the phenylethynyl end group in the polyimide chain.

Study on Co- and Ni-base $Si_2$ for SiC ohmic contact

  • Kim, Chang-Kyo;Yang, Seong-Joon;Noh, Il-Ho;Jang, Seok-Won;Cho, Nam-In;Hwa, Jeong-Kyoung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.167-171
    • /
    • 2003
  • We report the material and electrical properties of $CoSi_2$ and $NiSi_2$contacts to n-type 4H-SiC depending on the post-annealing and the metal covering conditions. The Ni and Co silicides are deposited by RF sputtering with Ni/Si/Ni and Co/Si/Co films separately deposited on 4H-SiC substrates. The deposited films are annealed at $800\;^{\circ}C$ in $Ar:H_2$ (9:1) gas ambient. Results of the specific surface resistivity measurements show that the resistivity of the Co-based metal contact was the one order lower than that of the Ni-based contact. The specific contact resistance was measured by a transmission line technique, and the specific contact resistivity of $1.5{\times}10^{-6}\;{\Omega}\;cm^2$ is obtained for Co/Si/Co metal structures after a two-step annealing; at $550\;^{\circ}C$ for 10 min and $800\;^{\circ}C$ for 3min. The physical properties of the contacts were examined by using XRD and AES, and the results indicate that the Co-based metal contacts have better structural stability of silicide phases formed after the high temperature annealing.

  • PDF

Mechanical Properties of PVB 3D Printed Output Fumigated with Ethanol (에탄올 훈증처리한 3D 프린팅 PVB 출력물의 기계적 특성)

  • Kang, Eun-Young;Lim, Ji-Ho;Choi, Seunggon;Mun, Jong Wook;Lee, Yu Kyung;Lee, Sun Kon;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.369-375
    • /
    • 2020
  • FDM 3D printing structures have rough surfaces and require post-treatment to improve the properties. Fumigation is a representative technique for removing surface unevenness. Surface treatment by fumigation proceeds by dissolving the surface of the protruding structure using a vaporized solvent. In this study, 3D printed PVB outputs are surface-treated with ethyl-alcohol fumigation. As the fumigation time increases, the surface flattens as ethanol dissolves the mountains on the surface of PVB and the surface valleys are filled with dissolved PVB. Through the fumigation process, the mechanical strength tends to decrease, and deformation rate increases. Ethanol vapor permeates into PVB, widening the distance between chains and resulting in weak bonding strength between chains. In order to confirm the effect of fumigation only, an annealing process is performed at 80 ℃ for 1, 5, 10, 30, and 50 minutes and the results of the fumigation are compared.

A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head (액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성)

  • Hong, Hyun-Uk;Bae, Sang-Hyun;Kwon, Soon-Il;Lee, Je-Hyun;Do, Jeong-Hyeon;Choi, Baig-Gyu;Kim, In-Soo;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

MAPK3 at the Autism-Linked Human 16p11.2 Locus Influences Precise Synaptic Target Selection at Drosophila Larval Neuromuscular Junctions

  • Park, Sang Mee;Park, Hae Ryoun;Lee, Ji Hye
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.151-161
    • /
    • 2017
  • Proper synaptic function in neural circuits requires precise pairings between correct pre- and post-synaptic partners. Errors in this process may underlie development of neuropsychiatric disorders, such as autism spectrum disorder (ASD). Development of ASD can be influenced by genetic factors, including copy number variations (CNVs). In this study, we focused on a CNV occurring at the 16p11.2 locus in the human genome and investigated potential defects in synaptic connectivity caused by reduced activities of genes located in this region at Drosophila larval neuromuscular junctions, a well-established model synapse with stereotypic synaptic structures. A mutation of rolled, a Drosophila homolog of human mitogen-activated protein kinase 3 (MAPK3) at the 16p11.2 locus, caused ectopic innervation of axonal branches and their abnormal defasciculation. The specificity of these phenotypes was confirmed by expression of wild-type rolled in the mutant background. Albeit to a lesser extent, we also observed ectopic innervation patterns in mutants defective in Cdk2, Gq, and Gp93, all of which were expected to interact with Rolled MAPK3. A further genetic analysis in double heterozygous combinations revealed a synergistic interaction between rolled and Gp93. In addition, results from RT-qPCR analyses indicated consistently reduced rolled mRNA levels in Cdk2, Gq, and Gp93 mutants. Taken together, these data suggest a central role of MAPK3 in regulating the precise targeting of presynaptic axons to proper postsynaptic targets, a critical step that may be altered significantly in ASD.

Seismic behavior of full-scale square concrete filled steel tubular columns under high and varied axial compressions

  • Phan, Hao D.;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.677-689
    • /
    • 2020
  • A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.