• 제목/요약/키워드: Post structures

검색결과 943건 처리시간 0.023초

페로브스카이트 La0.5Ca0.5MnO3 재료의 열전 특성에 미치는 열처리 효과 (Thermal Treatment Effect on Thermoelectric Characteristics of Perovskite La0.5Ca0.5MnO3)

  • 양수철
    • 전기화학회지
    • /
    • 제20권3호
    • /
    • pp.55-59
    • /
    • 2017
  • 본 연구에서는 밀도범함수법 (DFT; Density Functional Theory) 기반의 제일원리 계산을 통해 페로브스카이트 $La_{0.5}Ca_{0.5}MnO_3$ (LCMO) 재료의 열전 특성에 미치는 열처리 효과를 조사하고 실험을 통해 확인해 보았다. 시뮬레이션을 통해 얻어진 열전 파워팩터 (PF; Power Factor) 값은 열처리 온도가 올라감에 따라 증가하는 현상을 보였으며, 1100 K에서 높은 PF 값 ($S^2{\sigma}=566{\mu}W/m{\cdot}K^2$)을 나타내었다. 해당 PF 열전 특성 값은 전기전도도 (Electrical Conductivity) 값의 향상보다는 지벡계수 (Seebeck Coefficient)의 향상에 더욱 우세한 영향을 받은 것으로 확인되었으며, 실험을 통해 각각의 열전 특성들에 미치는 영향성을 확인하였다. 수열합성법을 통해 합성된 $La_{0.5}Ca_{0.5}MnO_3$ 재료를 가지고 600K ~ 1100K의 온도 조건에서 열처리 공정을 진행했으며, 이후 XRD (X-ray Diffraction) 분석과 SEM (Scanning Electron Microscope) 분석을 통해 재료의 특성을 분석하였다. 결과적으로 사방정계 구조를 가지는 페로브스카이트 LCMO 재료는 900K 이상에서 16~19 nm의 작은 결정 크기를 가지고 있음을 확인했으며, 이를 통해 열처리 온도의 증가가 열전 주요 특성인 전기전도도와 지벡계수 값을 각각 향상시킬 수 있음을 밝혔다.

내부연결방식 임플랜트 시스템의 삼차원 유한요소법적 연구 (THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF INTERNALLY CONNECTED IMPLANT SYSTEMS)

  • 김유리;조혜원;이재봉
    • 대한치과보철학회지
    • /
    • 제44권1호
    • /
    • pp.85-102
    • /
    • 2006
  • Statement of problem: Currently, there are some 20 different geometric variations in implant/abutment interface available. The geometry is important because it is one of the primary determinants of joint strength, joint stability, locational and rotational stability. Purpose: As the effects of the various implant-abutment connections and the prosthesis height variation on stress distribution are not yet examined this study is to focus on the different types of implant-abutment connection and the prosthesis height using three dimensional finite element analysis. Material and method. The models were constructed with ITI, 3i TG, Bicon, Frialit-2 fixtures and solid abutment, TG post, Bicon post, EstheticBase abutment respectively. And the super structures were constructed as mandibular second premolar shapes with 8.5 mm, 11 mm, 13.5 mm of crown height. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the central pit of an occlusal surface. von Mises stresses were recorded and compared in the crowns, abutments, fixtures. Results: 1. Under the oblique loading, von Mises stresses were larger in the crown, abutment, fixture compared to the vertical loading condition. 2. The stresses were increased proportionally to the crown height under oblique loading but showed little differences with three different crown heights under vertical loading. 3. In the crown, the highest stress areas were loading points under vertical loading, and the finish lines under oblique loading. 4. Under the oblique loading, the higher stresses were located in the fixture/abutment interface of the Bicon and Frialit-2 systems compared to the ITI and TG systems. Conclusions: The stress distribution patterns of each implant-abutment system had difference among them and adequate crown height/implant ratio was important to reduce the stresses around the implants.

A framework for modelling mechanical behavior of surrounding rocks of underground openings under seismic load

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Pei, Qitao;Wu, Yongjin
    • Earthquakes and Structures
    • /
    • 제13권6호
    • /
    • pp.519-529
    • /
    • 2017
  • The surrounding rocks of underground openings are natural materials and their mechanical behavior under seismic load is different from traditional man-made materials. This paper proposes a framework to comprehensively model the mechanical behavior of surrounding rocks. Firstly, the effects of seismic load on the surrounding rocks are summarized. Three mechanical effects and the mechanism, including the strengthening effect, the degradation effect, and the relaxation effect, are detailed, respectively. Then, the framework for modelling the mechanical behavior of surrounding rocks are outlined. The strain-dependent characteristics of rocks under seismic load is considered to model the strengthening effect. The damage concept under cyclic load is introduced to model the degradation effect. The quantitative relationship between the damage coefficient and the relaxation zone is established to model the relaxation effect. The major effects caused by seismic load, in this way, are all considered in the proposed framework. Afterwards, an independently developed 3D dynamic FEM analysis code is adopted to include the algorithms and models of the framework. Finally, the proposed framework is illustrated with its application to an underground opening subjected to earthquake impact. The calculation results and post-earthquake survey conclusions are seen to agree well, indicating the effectiveness of the proposed framework. Based on the numerical calculation results, post-earthquake reinforcement measures are suggested.

Vision-based dense displacement and strain estimation of miter gates with the performance evaluation using physics-based graphics models

  • Narazaki, Yasutaka;Hoskere, Vedhus;Eick, Brian A.;Smith, Matthew D.;Spencer, Billie F.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.709-721
    • /
    • 2019
  • This paper investigates the framework of vision-based dense displacement and strain measurement of miter gates with the approach for the quantitative evaluation of the expected performance. The proposed framework consists of the following steps: (i) Estimation of 3D displacement and strain from images before and after deformation (water-fill event), (ii) evaluation of the expected performance of the measurement, and (iii) selection of measurement setting with the highest expected accuracy. The framework first estimates the full-field optical flow between the images before and after water-fill event, and project the flow to the finite element (FE) model to estimate the 3D displacement and strain. Then, the expected displacement/strain estimation accuracy is evaluated at each node/element of the FE model. Finally, methods and measurement settings with the highest expected accuracy are selected to achieve the best results from the field measurement. A physics-based graphics model (PBGM) of miter gates of the Greenup Lock and Dam with the updated texturing step is used to simulate the vision-based measurements in a photo-realistic environment and evaluate the expected performance of different measurement plans (camera properties, camera placement, post-processing algorithms). The framework investigated in this paper can be used to analyze and optimize the performance of the measurement with different camera placement and post-processing steps prior to the field test.

Post-seismic assessment of existing constructions: evaluation of the shakemaps for identifying exclusion zones in Emilia

  • Braga, Franco;Gigliotti, Rosario;Monti, Giorgio;Morelli, Francesco;Nuti, Camillo;Salvatore, Walter;Vanzi, Ivo
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.37-56
    • /
    • 2015
  • The Emilia, May-July 2012, earthquake has dramatically highlighted the only the hazards facing the people in insufficiently secured workplaces, but also the socio-economic consequences of interruption of production activities. After the event, in order to guarantee suitable safety levels, the Italian government asked for a generalized seismic retrofit of buildingsaffected by the earthquake under consideration. Considering that Emilia is one of the most industrialized Italian region, the number of the industrial buildings to be verified could however lead to not acceptable resumption of production time. So, with the aim to speed up the recovery, were leaved out from this request the buildings which had undergone a strong enoughshaking without any damage. In practice, the earthquakes were being used as a "test" to evaluate the seismic structural strength. Besides, the Italian government provision specifies also the zones, within which buildings that escaped evident damage are exempt from obligatory checks, and termed "exclusion zones", shall be individuated using the data provided by the Italian National Institute of Geophysics and Volcanology in the form of so-called "shakemaps". Obviously, the precision of such data greatly influences the determination of the exclusions zones and so all the economic issues related to them. Starting from these considerations, the present paper describes an evaluation of the reliability of the procedure of shakemap generation with specific regard to the seismic events that struck the Emilia region on May 20 and 29, 2012.

Effect of spiral spacing on axial compressive behavior of square reinforced concrete filled steel tube (RCFST) columns

  • Qiao, Qiyun;Zhang, Wenwen;Mou, Ben;Cao, Wanlin
    • Steel and Composite Structures
    • /
    • 제31권6호
    • /
    • pp.559-573
    • /
    • 2019
  • Spiral spacing effect on axial compressive behavior of reinforced concrete filled steel tube (RCFST) stub column is experimentally investigated in this paper. A total of twenty specimens including sixteen square RCFST columns and four benchmarked conventional square concrete filled steel tube (CFST) columns are fabricated and tested. Test variables include spiral spacing (spiral ratio) and concrete strength. The failure modes, load versus displacement curves, compressive rigidity, axial compressive strength, and ductility of the specimens are obtained and analyzed. Especially, the effect of spiral spacing on axial compressive strength and ductility is investigated and discussed in detail. Test results show that heavily arranged spirals considerably increase the ultimate compressive strength but lightly arranged spirals have no obvious effect on the ultimate strength. In practical design, the effect of spirals on RCFST column strength should be considered only when spirals are heavily arranged. Spiral spacing has a considerable effect on increasing the post-peak ductility of RCFST columns. Decreasing of the spiral spacing considerably increases the post-peak ductility of the RCFSTs. When the concrete strength increases, ultimate strength increases but the ductility decreases, due to the brittleness of the higher strength concrete. Arranging spirals, even with a rather small amount of spirals, is an economical and easy solution for improving the ductility of RCFST columns with high-strength concrete. Ultimate compressive strengths of the columns are calculated according to the codes EC4 (2004), GB 50936 (2014), AIJ (2008), and ACI 318 (2014). The ultimate strength of RCFST stub columns can be most precisely evaluated using standard GB 50936 (2014) considering the effect of spiral confinement on core concrete.

Analytical study of composite steel-concrete beams with external prestressing

  • Turini, Thiago T.;Calenzani, Adenilcia F.G.
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.595-609
    • /
    • 2022
  • Prestressed composite steel-concrete beams are still a technology restricted to repair sites of large-scale structures and spans. One of the reasons for that is the absence of standard frameworks and publications regarding their design and implementation. In addition, the primary normative codes do not address this subject directly, which might be related to a scarcity of papers indicating methods of design that would align the two technics, composite beams and external prestressing. In this context, this paper proposes methods to analyze the sizing of prestressed composite beams submitted to pre-tension and post-tension with a straight or polynomial layout cable. This inquiry inspected a hundred and twenty models of prestressed composite beams according to its prestressing technology and the eccentricity and value of the prestressing force. The evaluation also included the ratio between span and height of the steel profile, thickness and typology of the concrete slab, and layout of the prestressing cables. As for the results, it was observed that the eccentricity of the prestressing force doesn't significantly influence the bending resistance. In prestressed composite beams subjected to a sagging moment, the ratio L/d can reach 35 and 30 for steel-concrete composite slabs and solid concrete slabs, respectively. Considering the negative bending moment resistance, the value of the L/d ratio must be less than or equal to 25, regardless of the type of slab. When it comes to the value of the prestressing force, a variation greater than 10% causes a 2.6% increase in the positive bending moment resistance and a 4% decrease in the negative bending moment resistance. The pre-tensioned composite beams showed a superior response to flexural-compression and excessive compression limit states than the post-tensioned ones.

Effect of hemispherical dimples at titanium implant abutments for the retention of cemented crowns

  • Jung-Hoon Choi;Seong-Joo Heo;Jai-Young Koak;Seong-Kyun Kim;Ji-Man Park;Jin-Soo Ahn
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권2호
    • /
    • pp.63-71
    • /
    • 2023
  • PURPOSE. The aim of this study was to assess the effect of hemispherical dimple structures on the retention of cobalt-chromium (Co-Cr) crowns cemented to titanium abutments, with different heights and numbers of dimples on the axial walls. MATERIALS AND METHODS. 3.0-mm and 6.0-mm abutments (N = 180) and Co-Cr crowns were prepared. The experimental groups were divided into two and four dimple groups. The crowns were cemented by TempBond and PANAVIA F 2.0 cements. The retention forces were measured after thermal treatments. A two-way Analysis of Variance (ANOVA) and post-hoc Tukey HSD test were conducted to analyze change in retention forces by use of dimples between groups, as well as t test for the effect of abutment height change (α = .05). RESULTS. Results of the two-way ANOVA showed a statistically significant difference in retention force due to the use of dimples, regardless of the types of cements used (P < .001). A significantly higher mean retention forces were observed in the groups with dimples than in the control group, using the post hoc Tukey HSD test (P < .001). Results of t test displayed a statistically significant increase in the retention force with 6.0-mm abutments compared with 3.0-mm abutments (P < .001). The groups without dimples revealed adhesive failure of cements, while the groups with dimples showed mixed failure of cements. CONCLUSION. Use of hemispherical dimples was effective for increasing retention forces of cemented crowns.

Collapse failure mechanism of subway station under mainshock-aftershocks in the soft area

  • Zhen-Dong Cui;Wen-Xiang Yan;Su-Yang Wang
    • Geomechanics and Engineering
    • /
    • 제36권3호
    • /
    • pp.303-316
    • /
    • 2024
  • Seismic records are composed of mainshock and a series of aftershocks which often result in the incremental damage to underground structures and bring great challenges to the rescue of post-disaster and the repair of post-earthquake. In this paper, the repetition method was used to construct the mainshock-aftershocks sequence which was used as the input ground motion for the analysis of dynamic time history. Based on the Daikai station, the two-dimensional finite element model of soil-station was established to explore the failure process of station under different seismic precautionary intensities, and the concept of incremental damage of station was introduced to quantitatively analyze the damage condition of structure under the action of mainshock and two aftershocks. An arc rubber bearing was proposed for the shock absorption. With the arc rubber bearing, the mode of the traditional column end connection was changed from "fixed connection" to "hinged joint", and the ductility of the structure was significantly improved. The results show that the damage condition of the subway station is closely related to the magnitude of the mainshock. When the magnitude of the mainshock is low, the incremental damage to the structure caused by the subsequent aftershocks is little. When the magnitude of the mainshock is high, the subsequent aftershocks will cause serious incremental damage to the structure, and may even lead to the collapse of the station. The arc rubber bearing can reduce the damage to the station. The results can offer a reference for the seismic design of subway stations under the action of mainshock-aftershocks.

High-rate Single-Frequency Precise Point Positioning (SF-PPP) in the detection of structural displacements and ground motions

  • Mert Bezcioglu;Cemal Ozer Yigit;Ahmet Anil Dindar;Ahmed El-Mowafy;Kan Wang
    • Structural Engineering and Mechanics
    • /
    • 제89권6호
    • /
    • pp.589-599
    • /
    • 2024
  • This study presents the usability of the high-rate single-frequency Precise Point Positioning (SF-PPP) technique based on 20 Hz Global Positioning Systems (GPS)-only observations in detecting dynamic motions. SF-PPP solutions were obtained from post-mission and real-time GNSS corrections. These include the International GNSS Service (IGS)-Final, IGS real-time (RT), real-time MADOCA (Multi-GNSS Advanced Demonstration tool for Orbit and Clock Analysis), and real-time products from the Australian/New Zealand satellite-based augmentation systems (SBAS, known as SouthPAN). SF-PPP results were compared with LVDT (Linear Variable Differential Transformer) sensor and single-frequency relative positioning (SF-RP) solutions. The findings show that the SF-PPP technique successfully detects the harmonic motions, and the real-time products-based PPP solutions were as accurate as the final post-mission products. In the frequency domain, all GNSS-based methods evaluated in this contribution correctly detect the dominant frequency of short-term harmonic oscillations, while the differences in the amplitude values corresponding to the peak frequency do not exceed 1.1 mm. However, evaluations in the time domain show that SF-PPP needs high-pass filtering to detect accurate displacement since SF-PPP solutions include trends and low-frequency fluctuations, mainly due to atmospheric effects. Findings obtained in the time domain indicate that final, real-time, and MADOCA-based PPP results capture short-term dynamic behaviors with an accuracy ranging from 3.4 mm to 8.5 mm, and SBAS-based PPP solutions have several times higher RMSE values compared to other methods. However, after high-pass filtering, the accuracies obtained from PPP methods decreased to a few mm. The outcomes demonstrate the potential of the high-rate SF-PPP method to reliably monitor structural and earthquake-induced ground motions and vibration frequencies of structures.