DOI QR코드

DOI QR Code

Thermal Treatment Effect on Thermoelectric Characteristics of Perovskite La0.5Ca0.5MnO3

페로브스카이트 La0.5Ca0.5MnO3 재료의 열전 특성에 미치는 열처리 효과

  • Yang, Su-Chul (Department of Chemical Engineering, Dong-A University)
  • 양수철 (동아대학교 화학공학과)
  • Received : 2017.06.18
  • Accepted : 2017.08.24
  • Published : 2017.08.31

Abstract

In this study, thermoelectric characteristics of perovskite $La_{0.5}Ca_{0.5}MnO_3$ (LCMO) nanomaterials were investigated by theoretical simulation and experimental analysis. Thermoelectric power factors calculated by DFT simulation were gradually enhanced as increase in annealing temperature. Maximum power factor was obtained with high magnitude of $S^2{\sigma}=566{\mu}W/m{\cdot}K^2$ at 1100 K through a dominant improvement of Seebeck coefficient compared with electrical conductivity. Experimentally, the LCMO nanomaterials were hydrothermally synthesized and then treated by post thermal annealing with temperature variation. X-ray diffraction and SEM analysis illustrated that LCMO exhibited orthorhombic perovskite structures with small grain size of 16~19 nm over 873 K. The results directly confirmed that improvement of crystallinity and decrease of mean grain size given by post thermal annealing lead to enhancements of electrical conductivity and Seebeck coefficient, respectively.

본 연구에서는 밀도범함수법 (DFT; Density Functional Theory) 기반의 제일원리 계산을 통해 페로브스카이트 $La_{0.5}Ca_{0.5}MnO_3$ (LCMO) 재료의 열전 특성에 미치는 열처리 효과를 조사하고 실험을 통해 확인해 보았다. 시뮬레이션을 통해 얻어진 열전 파워팩터 (PF; Power Factor) 값은 열처리 온도가 올라감에 따라 증가하는 현상을 보였으며, 1100 K에서 높은 PF 값 ($S^2{\sigma}=566{\mu}W/m{\cdot}K^2$)을 나타내었다. 해당 PF 열전 특성 값은 전기전도도 (Electrical Conductivity) 값의 향상보다는 지벡계수 (Seebeck Coefficient)의 향상에 더욱 우세한 영향을 받은 것으로 확인되었으며, 실험을 통해 각각의 열전 특성들에 미치는 영향성을 확인하였다. 수열합성법을 통해 합성된 $La_{0.5}Ca_{0.5}MnO_3$ 재료를 가지고 600K ~ 1100K의 온도 조건에서 열처리 공정을 진행했으며, 이후 XRD (X-ray Diffraction) 분석과 SEM (Scanning Electron Microscope) 분석을 통해 재료의 특성을 분석하였다. 결과적으로 사방정계 구조를 가지는 페로브스카이트 LCMO 재료는 900K 이상에서 16~19 nm의 작은 결정 크기를 가지고 있음을 확인했으며, 이를 통해 열처리 온도의 증가가 열전 주요 특성인 전기전도도와 지벡계수 값을 각각 향상시킬 수 있음을 밝혔다.

Keywords

References

  1. W. S. Liu, X. Yan, G. Chen, and Z. F. Ren, Nano Energy, 1, 42-56 (2012). https://doi.org/10.1016/j.nanoen.2011.10.001
  2. J. F. Li, W. S. Liu, L. D. Zhao, and M. Zhou, Npg Asia Materials, 2, 152-158 (2010). https://doi.org/10.1038/asiamat.2010.138
  3. M. Culebras, R. Toran, C. M. Gomez, and A. Cantarero, Nanoscale Research Letters, 9, 415 (2014). https://doi.org/10.1186/1556-276X-9-415
  4. X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhang, Applied Physics Letters, 86, 062111 (2005). https://doi.org/10.1063/1.1863440
  5. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science, 321, 554-557 (2008). https://doi.org/10.1126/science.1159725
  6. A. J. Minnich, H. Lee, X. W. Wang, G. Joshi, M. S. Dresselhaus, Z. F. Ren, G. Chen, and D. Vashaee, Physical Review B, 80, 155327 (2009). https://doi.org/10.1103/PhysRevB.80.155327
  7. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, Advanced Materials, 19, 1043-1053 (2007). https://doi.org/10.1002/adma.200600527
  8. T. E. Humphrey and H. Linke, Physical Review Letters, 94, 096601 (2005). https://doi.org/10.1103/PhysRevLett.94.096601
  9. S. Hebert, D. Berthebaud, R. Daou, Y. Breard, D. Pelloquin, E. Guilmeau, F. Gascoin, O. Lebedev, and A. Maignan, Journal of Physics-Condensed Matter, 28, 013001 (2016). https://doi.org/10.1088/0953-8984/28/1/013001
  10. P. Jha, T. D. Sands, P. Jackson, C. Bomberger, T. Favaloro, S. Hodson, J. Zide, X. F. Xu, and A. Shakouri, Journal of Applied Physics, 113, 193702 (2013). https://doi.org/10.1063/1.4804937
  11. D. Varshney, I. Mansuri, and A. Yogi, Low Temperature Physics, 36, 629-634 (2010 ). https://doi.org/10.1063/1.3479297
  12. M. S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. C. Muller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Advanced Functional Materials, 14, 1189-1196 (2004). https://doi.org/10.1002/adfm.200400109
  13. R. Z. Zhang, X. Y. Hua, P. Guo, and C. L. Wang, Physica B-Condensed Matter, 407, 1114-1118 (2012). https://doi.org/10.1016/j.physb.2012.01.083
  14. P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto, and L. Scolfaro, Journal of Solid State Chemistry, 231, 123-131 (2015). https://doi.org/10.1016/j.jssc.2015.08.024
  15. M. W. Oh, D. M. Wee, S. D. Park, B. S. Kim, and H. W. Lee, Physical Review B, 77, 165119 (2008). https://doi.org/10.1103/PhysRevB.77.165119
  16. G. Yang, J. H. Wu, J. Zhang, and D. W. Ma, Journal of Alloys and Compounds, 678, 12-17 (2016). https://doi.org/10.1016/j.jallcom.2016.03.131
  17. T. Zhang, C. G. Jin, T. Qian, X. L. Lu, J. M. Bai, and X. G. Li, Journal of Materials Chemistry, 14, 2787-2789 (2004). https://doi.org/10.1039/b405288a
  18. D. F. Zou, S. H. Xie, Y. Y. Liu, J. G. Lin, and J. Y. Li, Journal of Applied Physics, 113, 193705 (2013). https://doi.org/10.1063/1.4804939
  19. R. Tripathi, A. Dogra, A. K. Srivastava, V. P. S. Awana, R. K. Kotnala, G. L. Bhalla, and H. Kishan, Journal of Physics D-Applied Physics, 42, 025003 (2009). https://doi.org/10.1088/0022-3727/42/2/025003