• Title/Summary/Keyword: Position tracker

Search Result 80, Processing Time 0.028 seconds

A SDINS Error Compensation Scheme Using Star Tracker

  • Yim, Jong-Bin;Lyou, Joon;Lim, You-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.888-893
    • /
    • 2005
  • Since inertial sensor errors which increase with time are caused by initial orientation error and sensor errors(accelerometer bias and gyro drift bias), the accuracy of these devices, while still improving, is not adequate for many of today's high-precision, long-duration sea, aircraft, and long-range flight missions. This paper presents a navigation error compensation scheme for Strap-Down Inertial Navigation System(SDINS) using star tracker. To be specific, SDINS error model and measurement equation are derived, and Kalman filter is implemented. Simulation results show the boundedness of position and attitude errors.

  • PDF

Precision Position Estimation for Tracking the Moving Object (이동물체의 추적을 위한 정밀 위치추정)

  • In, Chu-Sik;Lee, Ja-Sung;Hong, Suk-Kyo;Koh, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.335-337
    • /
    • 1994
  • The correlation tracker developed by John M. Fitts in 1979 is the most complex to mechanize but provides the best tracking performance in a low SNR condition. Correlation tracker would rewove the requirements for optimizing threshold and has no need to know information about the target. But if the displacement of the target is large, the tracking error of the correlation tracker tends to diverge. In this paper, we suggest a precision image tracking algorithm which improves the tracking performance via iterative application of the matched filter estimation algorithm.

  • PDF

A Study on Concentrating Photovoltaic System by GPS Solar Tracker (GPS 태양추적장치를 이용한 집광형 태양광발전시스템에 관한 연구)

  • Jeong, Yong-Hwan;Lim, Jung-Yeol
    • Journal of IKEEE
    • /
    • v.15 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • The energy of CPV system is different as the altitude and azimuth of solar. In order to The maximum of solar energy density, the tracking system which does there to make be the module and the solar will be able to maintain a normal line is necessary. This paper proposed for GPS solar tracker of stand-alone 60[W] concentrating photovoltaic system. The position algorithm of solar tracker is through the coordinates transformation calculating the altitude and azimuth of the solar.

Robust Head Tracking using a Hybrid of Omega Shape Tracker and Face Detector for Robot Photographer (로봇 사진사를 위한 오메가 형상 추적기와 얼굴 검출기 융합을 이용한 강인한 머리 추적)

  • Kim, Ji-Sung;Joung, Ji-Hoon;Ho, An-Kwang;Ryu, Yeon-Geol;Lee, Won-Hyung;Jin, Chung-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.152-159
    • /
    • 2010
  • Finding a head of a person in a scene is very important for taking a well composed picture by a robot photographer because it depends on the position of the head. So in this paper, we propose a robust head tracking algorithm using a hybrid of an omega shape tracker and local binary pattern (LBP) AdaBoost face detector for the robot photographer to take a fine picture automatically. Face detection algorithms have good performance in terms of finding frontal faces, but it is not the same for rotated faces. In addition, when the face is occluded by a hat or hands, it has a hard time finding the face. In order to solve this problem, the omega shape tracker based on active shape model (ASM) is presented. The omega shape tracker is robust to occlusion and illuminationchange. However, whenthe environment is dynamic,such as when people move fast and when there is a complex background, its performance is unsatisfactory. Therefore, a method combining the face detection algorithm and the omega shape tracker by probabilistic method using histograms of oriented gradient (HOG) descriptor is proposed in this paper, in order to robustly find human head. A robot photographer was also implemented to abide by the 'rule of thirds' and to take photos when people smile.

Development of Acquisition and Analysis System of Radar Information for Small Inshore and Coastal Fishing Vessels - Position Tracking and Real-Time Monitoring- (연근해 소형 어선의 레이더 정보 수록 및 해석 시스템 개발 -위치 추적 및 실시간 모니터링 -)

  • 이대재;김광식;신형일;변덕수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.337-346
    • /
    • 2003
  • This paper describes on the system and method for automatically tracking and real-time monitoring the position of target ships relative to the own ship using a PC based radar system that displays radar images and electronic charts together on a single PC screen. This system includes a simulator for generating the GGA and VTG information of target ships and a simulator for generating the TTM and OSD outputs from a ARPA radar and then host computer accepts NMEA0183 sentences on the maneuvering information of target ships from these simulators. The results obtained are summarized as follows;1. The system developed this study can be used as a range finder for measuring the distance between two ships and as a device for providing the maneuvering information such as distance and bearing to target ships from own ship on ECS screen. 2. From the result of position tracking for a selected target ship tracked with an update rate of 5 seconds using the $\alpha$-$\beta$ tracker, we concluded that the smoothing effect by the $\alpha$-$\beta$tracker was very effective and stable except in the time interval until about one minute after the target is detected. 3. From the fact that the real-time maneuvering information of tracked ship targets via a local area network (LAN) from a host computer installed a radar target extractor was successfully transferred to various monitoring computers of ship, we concluded that this system can be used as a sub-monitoring system of ARPA radar.

A study on Photovoltaic System to Considers a Solar Position Tracker for Air Conditioner a Clinic room (병실 냉.난방장치용 태양 위치 추적기를 이용한 태양광 발전시스템에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1355-1362
    • /
    • 2007
  • In this paper, these setting can be useful in the microprocessor and sensor that designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, this is compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and that is composed an power conversion system with boost converter and voltage source inverter. This device can be used to the constant voltage control method for maximum power point tracking in boost converter control. Experiment Results is shown that using a SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control.

  • PDF

Design and Implementation of Radio Sensor Receiver for Measuring the Position of the Sun (태양 위치 측정용 전파 센서 수신기의 설계 및 제작)

  • Park, Jin-Woo;Choi, Yeon-Ung;Cho, Hong-Lyul;Son, Hong-Min
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.943-953
    • /
    • 2009
  • In this paper, we propose a radio sensor to measure the position of the sun for the solar tracker of a photovoltaic system. In order to satisfy the requirement for the measurement accuracy within ${\pm}5^{\circ}$, the sensor receiver with high gain, high sensitivity and wide bandwidth is designed and implemented. The receiver has the bandwidth of 104 MHz, the system gain of 69 dB and the sensitivity of 0.46 K at 5.1 GHz. The processes of design and implementation of the radio sensor receiver are described in this paper. The effectiveness of the proposed radio sensor in the measurement of the position of the sun is demonstrated experimentally under the condition of cloud cover. The results show the radio sensor can measure the position of the sun within the accuracy of ${\pm}4^{\circ}$ successfully.

A Study of Tracking the Sun Using Image-processing (영상처리를 이용한 태양추적 시스템에 대한 연구)

  • Hong, Soon-Pil;Kim, Mun-Joo;Kim, Eun-Sung;Kim, Doo-Yong;Hong, Jin-Woo;Kim, Ki-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.321-323
    • /
    • 2006
  • The light gets darker from center to edge of the light source. Therefore, we can find the center of the sun using shading histogram. Moreover, we can track the exact position of the sun with the shading histogram. In this paper, we propose a new technique using image-processing of digital camera, in order to locate the position of the sun.

  • PDF

Mobile Augmented Visualization Technology Using Vive Tracker (포즈 추적 센서를 활용한 모바일 증강 가시화 기술)

  • Lee, Dong-Chun;Kim, Hang-Kee;Lee, Ki-Suk
    • Journal of Korea Game Society
    • /
    • v.21 no.5
    • /
    • pp.41-48
    • /
    • 2021
  • This paper introduces a mobile augmented visualization technology that augments a three-dimensional virtual human body on a mannequin model using two pose(position and rotation) tracking sensors. The conventional camera tracking technology used for augmented visualization has the disadvantage of failing to calculate the camera pose when the camera shakes or moves quickly because it uses the camera image, but using a pose tracking sensor can overcome this disadvantage. Also, even if the position of the mannequin is changed or rotated, augmented visualization is possible using the data of the pose tracking sensor attached to the mannequin, and above all there is no load for camera tracking.

Development of 2-Axis Solar Tracker with BLDC Motor-Cylinder Actuator and Hall Sensor Feedback (BLDC 모터-실린더 구동, 홀센서 피드백 방식의 2축 태양광 추적장치 개발)

  • Lho, Tae-Jung;Lee, Seung-Hyeon;Park, Min-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2334-2340
    • /
    • 2010
  • Sun position computed by Michalsky shows maximum $1.5^{\circ}$, $0.88^{\circ}$ and 2 minutes differences in azimuth, altitude, and sunrise and sunset times respectively compared with Korean Almanac. The 2-axis solar tracking system, which consist control panel with ATmega128 CPU, BLDC motor-cylinder actuator and 2-axis link mechanism, was developed. Computed azimuth and altitude of sun for a current time, and latitude and longitude of tracker position built are controlled in real time by BLDC motor-cylinder actuators comparing with the position feed-backed by Hall sensor. The use of BLDC motor is free in maintenance. Implementation of a home-return function by Hall sensor is to minimize the cumulative error.