• Title/Summary/Keyword: Pose Recognition

Search Result 278, Processing Time 0.024 seconds

Design of Robust Face Recognition System Realized with the Aid of Automatic Pose Estimation-based Classification and Preprocessing Networks Structure

  • Kim, Eun-Hu;Kim, Bong-Youn;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.6
    • /
    • pp.2388-2398
    • /
    • 2017
  • In this study, we propose a robust face recognition system to pose variations based on automatic pose estimation. Radial basis function neural network is applied as one of the functional components of the overall face recognition system. The proposed system consists of preprocessing and recognition modules to provide a solution to pose variation and high-dimensional pattern recognition problems. In the preprocessing part, principal component analysis (PCA) and 2-dimensional 2-directional PCA ($(2D)^2$ PCA) are applied. These functional modules are useful in reducing dimensionality of the feature space. The proposed RBFNNs architecture consists of three functional modules such as condition, conclusion and inference phase realized in terms of fuzzy "if-then" rules. In the condition phase of fuzzy rules, the input space is partitioned with the use of fuzzy clustering realized by the Fuzzy C-Means (FCM) algorithm. In conclusion phase of rules, the connections (weights) are realized through four types of polynomials such as constant, linear, quadratic and modified quadratic. The coefficients of the RBFNNs model are obtained by fuzzy inference method constituting the inference phase of fuzzy rules. The essential design parameters (such as the number of nodes, and fuzzification coefficient) of the networks are optimized with the aid of Particle Swarm Optimization (PSO). Experimental results completed on standard face database -Honda/UCSD, Cambridge Head pose, and IC&CI databases demonstrate the effectiveness and efficiency of face recognition system compared with other studies.

Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking (그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식)

  • Oh, Chi-Min;Islam, Md. Zahidul;Kim, Min-Wook;Lee, Chil-Woo
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.186-192
    • /
    • 2009
  • In this paper, we represent the recognition method for human frontal upper body pose. In HCI(Human Computer Interaction) and HRI(Human Robot Interaction) when a interaction is established the human has usually frontal direction to the robot or computer and use hand gestures then we decide to focus on human frontal upper-body pose, The two main difficulties are firstly human pose is consist of many parts which cause high DOF(Degree Of Freedom) then the modeling of human pose is difficult. Secondly the matching between image features and modeling information is difficult. Then using Pictorial Model we model the human main poses which are mainly took the space of frontal upper-body poses and we recognize the main poses by making main pose database. using determined main pose we used the model parameters for particle filter which predicts the posterior distribution for pose parameters and can determine more specific pose by updating model parameters from the particle having the maximum likelihood. Therefore based on recognizing main poses and tracking the specific pose we recognize the human frontal upper body poses.

  • PDF

Fast Convergence GRU Model for Sign Language Recognition

  • Subramanian, Barathi;Olimov, Bekhzod;Kim, Jeonghong
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.9
    • /
    • pp.1257-1265
    • /
    • 2022
  • Recognition of sign language is challenging due to the occlusion of hands, accuracy of hand gestures, and high computational costs. In recent years, deep learning techniques have made significant advances in this field. Although these methods are larger and more complex, they cannot manage long-term sequential data and lack the ability to capture useful information through efficient information processing with faster convergence. In order to overcome these challenges, we propose a word-level sign language recognition (SLR) system that combines a real-time human pose detection library with the minimized version of the gated recurrent unit (GRU) model. Each gate unit is optimized by discarding the depth-weighted reset gate in GRU cells and considering only current input. Furthermore, we use sigmoid rather than hyperbolic tangent activation in standard GRUs due to performance loss associated with the former in deeper networks. Experimental results demonstrate that our pose-based optimized GRU (Pose-OGRU) outperforms the standard GRU model in terms of prediction accuracy, convergency, and information processing capability.

Sliding Active Camera-based Face Pose Compensation for Enhanced Face Recognition (얼굴 인식률 개선을 위한 선형이동 능동카메라 시스템기반 얼굴포즈 보정 기술)

  • 장승호;김영욱;박창우;박장한;남궁재찬;백준기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.155-164
    • /
    • 2004
  • Recently, we have remarkable developments in intelligent robot systems. The remarkable features of intelligent robot are that it can track user and is able to doface recognition, which is vital for many surveillance-based systems. The advantage of face recognition compared with other biometrics recognition is that coerciveness and contact that usually exist when we acquire characteristics do not exist in face recognition. However, the accuracy of face recognition is lower than other biometric recognition due to the decreasing in dimension from image acquisition step and various changes associated with face pose and background. There are many factors that deteriorate performance of face recognition such as thedistance from camera to the face, changes in lighting, pose change, and change of facial expression. In this paper, we implement a new sliding active camera system to prevent various pose variation that influence face recognition performance andacquired frontal face images using PCA and HMM method to improve the face recognition. This proposed face recognition algorithm can be used for intelligent surveillance system and mobile robot system.

An Indoor Pose Estimation System Based on Recognition of Circular Ring Patterns (원형 링 패턴 인식에 기반한 실내용 자세추정 시스템)

  • Kim, Heon-Hui;Ha, Yun-Su
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.512-519
    • /
    • 2012
  • This paper proposes a 3-D pose (positions and orientations) estimation system based on the recognition of circular ring patterns. To deal with monocular vision-based pose estimation problem, we specially design a circular ring pattern that has a simplicity merit in view of object recognition. A pose estimation procedure is described in detail, which utilizes the geometric transformation of a circular ring pattern in 2-D perspective projection space. The proposed method is evaluated through the analysis of accuracy and precision with respect to 3-D pose estimation of a quadrotor-type vehicle in 3-D space.

A Study on Improvement of Face Recognition Rate with Transformation of Various Facial Poses and Expressions (얼굴의 다양한 포즈 및 표정의 변환에 따른 얼굴 인식률 향상에 관한 연구)

  • Choi Jae-Young;Whangbo Taeg-Keun;Kim Nak-Bin
    • Journal of Internet Computing and Services
    • /
    • v.5 no.6
    • /
    • pp.79-91
    • /
    • 2004
  • Various facial pose detection and recognition has been a difficult problem. The problem is due to the fact that the distribution of various poses in a feature space is mere dispersed and more complicated than that of frontal faces, This thesis proposes a robust pose-expression-invariant face recognition method in order to overcome insufficiency of the existing face recognition system. First, we apply the TSL color model for detecting facial region and estimate the direction of face using facial features. The estimated pose vector is decomposed into X-V-Z axes, Second, the input face is mapped by deformable template using this vectors and 3D CANDIDE face model. Final. the mapped face is transformed to frontal face which appropriates for face recognition by the estimated pose vector. Through the experiments, we come to validate the application of face detection model and the method for estimating facial poses, Moreover, the tests show that recognition rate is greatly boosted through the normalization of the poses and expressions.

  • PDF

Object Recognition-based Global Localization for Mobile Robots (이동로봇의 물체인식 기반 전역적 자기위치 추정)

  • Park, Soon-Yyong;Park, Mignon;Park, Sung-Kee
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.33-41
    • /
    • 2008
  • Based on object recognition technology, we present a new global localization method for robot navigation. For doing this, we model any indoor environment using the following visual cues with a stereo camera; view-based image features for object recognition and those 3D positions for object pose estimation. Also, we use the depth information at the horizontal centerline in image where optical axis passes through, which is similar to the data of the 2D laser range finder. Therefore, we can build a hybrid local node for a topological map that is composed of an indoor environment metric map and an object location map. Based on such modeling, we suggest a coarse-to-fine strategy for estimating the global localization of a mobile robot. The coarse pose is obtained by means of object recognition and SVD based least-squares fitting, and then its refined pose is estimated with a particle filtering algorithm. With real experiments, we show that the proposed method can be an effective vision- based global localization algorithm.

  • PDF

Head Pose Estimation Using Error Compensated Singular Value Decomposition for 3D Face Recognition (3차원 얼굴 인식을 위한 오류 보상 특이치 분해 기반 얼굴 포즈 추정)

  • 송환종;양욱일;손광훈
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.6
    • /
    • pp.31-40
    • /
    • 2003
  • Most face recognition systems are based on 2D images and applied in many applications. However, it is difficult to recognize a face when the pose varies severely. Therefore, head pose estimation is an inevitable procedure to improve recognition rate when a face is not frontal. In this paper, we propose a novel head pose estimation algorithm for 3D face recognition. Given the 3D range image of an unknown face as an input, we automatically extract facial feature points based on the face curvature. We propose an Error Compensated Singular Value Decomposition (EC-SVD) method based on the extracted facial feature points. We obtain the initial rotation angle based on the SVD method, and perform a refinement procedure to compensate for remained errors. The proposed algorithm is performed by exploiting the extracted facial features in the normaized 3D face space. In addition, we propose a 3D nearest neighbor classifier in order to select face candidates for 3D face recognition. From simulation results, we proved the efficiency and validity of the proposed algorithm.

Automatic 3D Head Pose-Normalization using 2D and 3D Interaction (자동 3차원 얼굴 포즈 정규화 기법)

  • Yu, Sun-Jin;Kim, Joong-Rock;Lee, Sang-Youn
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.211-212
    • /
    • 2007
  • Pose-variation factors present a significant problem in 2D face recognition. To solve this problem, there are various approaches for a 3D face acquisition system which was able to generate multi-view images. However, this created another pose estimation problem in terms of normalizing the 3D face data. This paper presents a 3D head pose-normalization method using 2D and 3D interaction. The proposed method uses 2D information with the AAM(Active Appearance Model) and 3D information with a 3D normal vector. In order to verify the performance of the proposed method, we designed an experiment using 2.5D face recognition. Experimental results showed that the proposed method is robust against pose variation.

  • PDF

3D Object Recognition and Accurate Pose Calculation Using a Neural Network (인공신경망을 이용한 삼차원 물체의 인식과 정확한 자세계산)

  • Park, Gang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1929-1939
    • /
    • 1999
  • This paper presents a neural network approach, which was named PRONET, to 3D object recognition and pose calculation. 3D objects are represented using a set of centroidal profile patterns that describe the boundary of the 2D views taken from evenly distributed view points. PRONET consists of the training stage and the execution stage. In the training stage, a three-layer feed-forward neural network is trained with the centroidal profile patterns using an error back-propagation method. In the execution stage, by matching a centroidal profile pattern of the given image with the best fitting centroidal profile pattern using the neural network, the identity and approximate orientation of the real object, such as a workpiece in arbitrary pose, are obtained. In the matching procedure, line-to-line correspondence between image features and 3D CAD features are also obtained. An iterative model posing method then calculates the more exact pose of the object based on initial orientation and correspondence.