In this paper, we present a global localization and position error compensation method in a known indoor environment using magnet hall sensors. In previous our researches, it was possible to compensate the pose errors of $x_e$, $y_e$, ${\theta}_e$ correctly on the surface of indoor environment with magnets sets by regularly arrange the magnets sets of identical pattern. To improve the proposed method, new strategy that can realize the global localization by changing arrangement of magnet pole is presented in this paper. Total six patterns of the magnets set form the unique landmarks. Therefore, the virtual map can be built by using the six landmarks randomly. The robots search a pattern of magnets set by rotating, and obtain the current global pose information by comparing the measured neighboring patterns with the map information that is saved in advance. We provide experimental results to show the effectiveness of the proposed method for a differential drive wheeled mobile robot.
본 논문에서는 측면 포즈 정규화를 통해 얻어진 부분영역을 이용해 대상의 포즈 변화에 강인한 얼굴인식 방법을 제안한다. 포즈변화에 강인한 얼굴인식을 위해 일반적으로 사용되는 방법인 포즈 정규화 방법은 포즈정규화과정 중에 가려져 보이지 않는 영역에 대한 정보를 가지고 있지 않기 때문에 문제가 발생하게 된다 일반적으로는 보상을 통해 문제를 해결 하고 있지만, 보상에 의해 영상이 왜곡이 되거나 특징정보를 잃는 경우가 많다. 이런 문제를 해결하기 위해 깊이찬가 큰 영역에서 주로 발생하는 왜곡을 줄이도록 정면이 아닌 측면으로의 정규화를 시도한다 또한 정규화후 왜곡이 발생한 영역은 제거하고 왜곡이 발생하지 않은 영역만을 이용해 인식과정을 수행한다 포즈가 좌우변화만 존재하는 경우와 상하변화도 존재하는 경우 두 가지 경우로 나누어 다루었으며 각각의 경우에 대해 실험을 통해 인식 성능의 향상을 확인하였다
본 논문에서는 최적 pRBFNNs 패턴분류기 기반 3차원 스캐너를 이용한 얼굴인식 알고리즘을 설계한다. 일반적으로 2차원 영상을 이용한 얼굴인식 시스템은 사진의 명암도를 이용하여 얼굴의 특징을 추출하게 된다. 그렇기 때문에 빛이나 조명, 또는 얼굴 포즈와 같은 환경 변화들은 시스템의 성능을 저하시킨다. 따라서 본 논문에서 제안된 얼굴인식 알고리즘은 2차원 얼굴인식 시스템의 한계를 극복하기 위하여 3차원 스캐너를 사용하여 설계한다. 먼저 3차원 스캐너를 이용하여 얼굴 형상을 스캔하고 스캔된 얼굴 형상은 포즈 보상 과정을 통하여 정면으로 변환된다. 그 후에 Point Signature 기법을 사용하여 얼굴의 깊이 정보를 추출하고 마지막으로 고차원 패턴인식 문제에 대한 해결을 위하여 최적화된 pRBFNNs (Polynomial-based Radial Basis Function Neural Networks) 모델을 사용하여 인식성능을 확인한다.
본 논문에서는 다항식 기반 RBFNNs를 이용하여 3차원 얼굴인식 알고리즘을 설계하고 인식률을 산출하는 방법을 제시한다. 2차원 얼굴인식의 경우 얼굴 포즈, 조명 등과 같은 외부 환경에 의해 인식률이 저하된다. 이러한 단점을 보완하기 위해 3차원 영상을 획득하여 얼굴인식을 수행한다. 얼굴인식을 수행하기 전에 3D스캐너를 통해 얻은 얼굴영상의 포즈 보상을 실시하고 얼굴의 형상을 정면으로 향하게 한다. 그리고 Point Signature 기법을 이용하여 얼굴의 깊이 값을 추출하게 된다. 추출된 데이터는 고차원 데이터로서 학습 및 인식을 수행함에 있어 문제가 생길 수 있기 때문에 PCA알고리즘을 수행하여 차원을 축소한 데이터를 사용한다. 효율적인 학습을 위해 최적화 알고리즘을 통해 파라미터 최적화를 수행하며 PSO, DE, GA 알고리즘을 사용하여 인식 성능을 확인한다.
Coastal economic activities usually generate externalities to other economic activities. The conflicts between coastal economic activities, especially land fillings and reclamations, and fisheries in coastal waters pose a typical one, which sometimes causes some social conflicts. In this regard, as the contents and requirements for rules and regulations on fisheries compensation may have important implications for solving such problems, important is to review rationales fur the formulas in calculating fisheries compensation. The purpose of this paper is to review the formulas for fisheries compensation from the economic view points, to highlight some problems and to suggest more appropriate formulas. It is found that the current formulas of fisheries compensation are not properly based on economic concepts and valuation techniques. Main problems are related, as followings, to the coefficient(0.8) employed in the formula, to fishermen's own wages and to current values of invested assets such as fishing boats and nets, etc.. First, it is not clear what the coefficient(0, 8) means. In Japan's case, the coefficient was assumed to reflect the opportunity cost of fishermen's own wages, but it was disappeared from the formula after the self-wage came to be included in totaling fishing cost. As our new formula will include the self-wage in fishing cost, the coefficient(0.8) should be excluded. Second, according to our formula, the current value of invested assets is added to total operating compensation, which will overestimate total compensation. Therefore, it is suggested that total present value of the assets to be invested during the business life should be deducted from total operating compensation. Third, as the self-wage will be included in total cost, opportunity cost for finding new jobs should be newly added to the formula. Finally, this paper also conducted a comparative case study considering above-mentioned factors. The case study showed that the current formulas overestimated total fisheries compensation.
최근 지능형 로봇에 대한 관심이 모아지고 있다. 지능형 로봇의 가장 큰 특징은 사용자를 추적, 인식하고 그 결과를 기반으로 상호활동적인 대응을 할 수 있다는 점이다. 얼굴인식이 다른 생채인식과의 비교에서 장점을 가질 수 있는 점은 비 강제성과 비 접촉성을 들 수 있다. 그러나 얼굴인식은 얼굴 취득단계부터 차원의 감소가 발생하고 인식하고자 하는 얼굴 및 주변 환경 변화가 매우 심하기 때문에 다른 생체인식에 비하여 인식률이 낮다. 얼굴인식의 성능을 저하시키는 요인들로는 조명변화, 포즈변화, 표정변화, 카메라와의 거리 등을 들 수 있다. 본 논문에서는 실제 환경에서 얼굴 인식 성능에 가장 많은 영향을 미치는 포즈변화에 대응하기 위하여 새로운 선형이동 능동형 카메라를 개발하여, 정면 얼굴에 근접한 영상을 취득하고 주성분 분석 및 Hidden Markov Model 알고리듬을 이용하여 인식률을 개선하고자 한다. 제한된 방법은 지능형 보안시스템 및 모바일 로봇에 적용하는 것을 목표로 개발 되었지만, 높은 정확도의 얼굴인식을 요구하는 응용분야에 널리 적용할 수가 있다.
In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.
Camera pose information from 2D face image is very important for making virtual 3D face model synchronize with the real face. It is also very important for any other uses such as: human computer interface, 3D object estimation, automatic camera control etc. In this paper, we have presented a camera position determination algorithm from a single 2D face image using the relationship between mouth position information and face region boundary information. Our algorithm first corrects the color bias by a lighting compensation algorithm, then we nonlinearly transformed the image into $YC_bC_r$ color space and use the visible chrominance feature of face in this color space to detect human face region. And then for face candidate, use the nearly reversed relationship information between $C_b\;and\;C_r$ cluster of face feature to detect mouth position. And then we use the geometrical relationship between mouth position information and face region boundary information to determine rotation angles in both x-axis and y-axis of camera position and use the relationship between face region size information and Camera-Face distance information to determine the camera-face distance. Experimental results demonstrate the validity of our algorithm and the correct determination rate is accredited for applying it into practice.
In this paper, 3D face recognition model is designed by using Polynomial based RBFNN(Radial Basis Function Neural Network) and PNN(Polynomial Neural Network). Also recognition rate is performed by this model. In existing 2D face recognition model, the degradation of recognition rate may occur in external environments such as face features using a brightness of the video. So 3D face recognition is performed by using 3D scanner for improving disadvantage of 2D face recognition. In the preprocessing part, obtained 3D face images for the variation of each pose are changed as front image by using pose compensation. The depth data of face image shape is extracted by using Multiple point signature. And whole area of face depth information is obtained by using the tip of a nose as a reference point. Parameter optimization is carried out with the aid of both ABC(Artificial Bee Colony) and PSO(Particle Swarm Optimization) for effective training and recognition. Experimental data for face recognition is built up by the face images of students and researchers in IC&CI Lab of Suwon University. By using the images of 3D face extracted in IC&CI Lab. the performance of 3D face recognition is evaluated and compared according to two types of models as well as point signature method based on two kinds of depth data information.
항공에 있어서 안전이 가장 중요한 것처럼 무인항공기 운영에 있어서도 안전이 가장 중요하고 무인항공기 운영자의 법적책임에 있어서도 안전운영책임이 가장 중요하다고 할 수 있다. 본 논문에서는 무인항공기 운영자의 안전운영 책임을 중심으로 무인항공기 운영자가 지게 되는 법적책임 문제를 사고 발생 시 피해를 보상해주는 보험 문제와 함께 심도있게 고찰하였다. 우선 무인항공기 운영자의 법적책임 문제는 가장 기본적인 무인항공기 운영자의 정의, 범위, 자격요건을 살펴보고 규제동향으로 국제민간항공협약, ICAO 부속서와 RPAS Manual, 로마협약 등 주요 국제협약, 항공안전법 등 국내 관련 법률상의 운영자의 책임규정을 고찰하였다. ICAO에서는 무인항공기도 궁극적으로는 유인항공기와 동등한 수준의 기술상 및 운항상의 안전성을 확보할 것을 요구하고 있으며 무인항공기 운영의 대원칙으로 사람, 재산 및 다른 항공기에 대한 위험을 최소화 하는 방법으로 운영 되어야 한다고 규정하고 있다. 이와 관련 무인항공기 사고의 경우는 대부분이 지상에 추락하여 제3자의 인명이나 재산에 피해를 입히는 사고가 대부분인 점을 감안 관련 국제협약인 로마 협약상의 운영자의 책임과 국내 상법 항공운송편의 제3자 책임 관련 규정을 중점적으로 살펴보았으며 사고 발생에 따른 배상책임 문제도 살펴보았다. 로마협약과 관련하여서는 1952년 로마협약이 운영자의 책임을 상세히 규정하고 있다. 배상책임과 관련하여서는 아직 발효는 되지 않았지만 EU 일부국가에서는 2009년 로마협약상의 책임한도액을 따르고 있는 점이 특징이다. 아직 우리나라는 어떠한 로마협약에도 가입하지 않고 있으나 상법 항공운송편은 배상책임에 있어 1978년 로마협약을 모델로 하고 있다. 이들 이외에 무인항공기 운영에 따르는 관련 법적책임으로 가장 많이 문제가 되고 있는 보안관련 책임과 사생활 침해에 대한 책임도 살펴보았다. 보험과 관련하여서는 전 세계적으로 항공보험의 가입 의무화 경향과 이에 따른 주요 각국의 규제현황을 살펴보고 무인항공기에의 적용 가능성을 살펴보았다. 또한 현행 국내 항공사업법상의 보험가입 의무화 조항과 초경량 비행장치 보험 규정과 문제점을 살펴보았다. 요컨대 무인항공기 운영자는 무인항공기를 인명이나 재산 또는 다른 항공기에 위험을 주지 않도록 안전하게 운영할 법적책임이 있으며 사고 발생 시는 적절한 보상책임이 있다고 할 것이며 이를 위한 보험제도 등 법제도적 장치가 마련되어야 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.