• Title/Summary/Keyword: Pose Angle Estimation

Search Result 26, Processing Time 0.011 seconds

Pose Estimation of 3D Object by Parametric Eigen Space Method Using Blurred Edge Images

  • Kim, Jin-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.12
    • /
    • pp.1745-1753
    • /
    • 2004
  • A method of estimating the pose of a three-dimensional object from a set of two-dimensioal images based on parametric eigenspace method is proposed. A Gaussian blurred edge image is used as an input image instead of the original image itself as has been used previously. The set of input images is compressed using K-L transformation. By comparing the estimation errors for the original, blurred original, edge, and blurred edge images, we show that blurring with the Gaussian function and the use of edge images enhance the data compression ratio and decrease the resulting from smoothing the trajectory in the parametric eigenspace, thereby allowing better pose estimation to be achieved than that obtainable using the original images as it is. The proposed method is shown to have improved efficiency, especially in cases with occlusion, position shift, and illumination variation. The results of the pose angle estimation show that the blurred edge image has the mean absolute errors of the pose angle in the measure of 4.09 degrees less for occlusion and 3.827 degrees less for position shift than that of the original image.

  • PDF

Accurate Face Pose Estimation and Synthesis Using Linear Transform Among Face Models (얼굴 모델간 선형변환을 이용한 정밀한 얼굴 포즈추정 및 포즈합성)

  • Suvdaa, B.;Ko, J.
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.4
    • /
    • pp.508-515
    • /
    • 2012
  • This paper presents a method that estimates face pose for a given face image and synthesizes any posed face images using Active Appearance Model(AAM). The AAM that having been successfully applied to various applications is an example-based learning model and learns the variations of training examples. However, with a single model, it is difficult to handle large pose variations of face images. This paper proposes to build a model covering only a small range of angle for each pose. Then, with a proper model for a given face image, we can achieve accurate pose estimation and synthesis. In case of the model used for pose estimation was not trained with the angle to synthesize, we solve this problem by training the linear relationship between the models in advance. In the experiments on Yale B public face database, we present the accurate pose estimation and pose synthesis results. For our face database having large pose variations, we demonstrate successful frontal pose synthesis results.

Nozzle Swing Angle Measurement Involving Weighted Uncertainty of Feature Points Based on Rotation Parameters

  • Liang Wei;Ju Huo;Chen Cai
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.300-306
    • /
    • 2024
  • To solve the nozzle swing angle non-contact measurement problem, we present a nozzle pose estimation algorithm involving weighted measurement uncertainty based on rotation parameters. Firstly, the instantaneous axis of the rocket nozzle is constructed and used to model the pivot point and the nozzle coordinate system. Then, the rotation matrix and translation vector are parameterized by Cayley-Gibbs-Rodriguez parameters, and the novel object space collinearity error equation involving weighted measurement uncertainty of feature points is constructed. The nozzle pose is obtained at this step by the Gröbner basis method. Finally, the swing angle is calculated based on the conversion relationship between the nozzle static coordinate system and the nozzle dynamic coordinate system. Experimental results prove the high accuracy and robustness of the proposed method. In the space of 1.5 m × 1.5 m × 1.5 m, the maximum angle error of nozzle swing is 0.103°.

Lane Detection-based Camera Pose Estimation (차선검출 기반 카메라 포즈 추정)

  • Jung, Ho Gi;Suhr, Jae Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.463-470
    • /
    • 2015
  • When a camera installed on a vehicle is used, estimation of the camera pose including tilt, roll, and pan angle with respect to the world coordinate system is important to associate camera coordinates with world coordinates. Previous approaches using huge calibration patterns have the disadvantage that the calibration patterns are costly to make and install. And, previous approaches exploiting multiple vanishing points detected in a single image are not suitable for automotive applications as a scene where multiple vanishing points can be captured by a front camera is hard to find in our daily environment. This paper proposes a camera pose estimation method. It collects multiple images of lane markings while changing the horizontal angle with respect to the markings. One vanishing point, the cross point of the left and right lane marking, is detected in each image, and vanishing line is estimated based on the detected vanishing points. Finally, camera pose is estimated from the vanishing line. The proposed method is based on the fact that planar motion does not change the vanishing line of the plane and the normal vector of the plane can be estimated by the vanishing line. Experiments with large and small tilt and roll angle show that the proposed method outputs accurate estimation results respectively. It is verified by checking the lane markings are up right in the bird's eye view image when the pan angle is compensated.

Novel Backprojection Method for Monocular Head Pose Estimation

  • Ju, Kun;Shin, Bok-Suk;Klette, Reinhard
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.50-58
    • /
    • 2013
  • Estimating a driver's head pose is an important task in driver-assistance systems because it can provide information about where a driver is looking, thereby giving useful cues about the status of the driver (i.e., paying proper attention, fatigued, etc.). This study proposes a system for estimating the head pose using monocular images, which includes a novel use of backprojection. The system can use a single image to estimate a driver's head pose at a particular time stamp, or an image sequence to support the analysis of a driver's status. Using our proposed system, we compared two previous pose estimation approaches. We introduced an approach for providing ground-truth reference data using a mannequin model. Our experimental results demonstrate that the proposed system provides relatively accurate estimations of the yaw, tilt, and roll angle. The results also show that one of the pose estimation approaches (perspective-n-point, PnP) provided a consistently better estimate compared to the other (pose from orthography and scaling with iterations, POSIT) using our proposed system.

Robot Posture Estimation Using Circular Image of Inner-Pipe (원형관로 영상을 이용한 관로주행 로봇의 자세 추정)

  • Yoon, Ji-Sup;Kang , E-Sok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.258-266
    • /
    • 2002
  • This paper proposes the methodology of the image processing algorithm that estimates the pose of the inner-pipe crawling robot. The inner-pipe crawling robot is usually equipped with a lighting device and a camera on its head for monitoring and inspection purpose of defects on the pipe wall and/or the maintenance operation. The proposed methodology is using these devices without introducing the extra sensors and is based on the fact that the position and the intensity of the reflected light from the inner wall of the pipe vary with the robot posture and the camera. The proposed algorithm is divided into two parts, estimating the translation and rotation angle of the camera, followed by the actual pose estimation of the robot . Based on the fact that the vanishing point of the reflected light moves into the opposite direction from the camera rotation, the camera rotation angle can be estimated. And, based on the fact that the most bright parts of the reflected light moves into the same direction with the camera translation, the camera position most bright parts of the reflected light moves into the same direction with the camera translation, the camera position can be obtained. To investigate the performance of the algorithm, the algorithm is applied to a sewage maintenance robot.

Estimate the Inclination Angle using Traveling Speed of Segway Robot on the Slope (경사로에서 세그웨이 로봇의 주행 속도를 통한 경사각 추정)

  • Jeong, Hee-In;Lee, Sang-Yong;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1164-1169
    • /
    • 2014
  • This paper proposes an angle estimation of Segway robot for the slop driving. Most of Segway robot was controlled by pose control of keeping robot's balance and motor control of driving. In motor control, we analyzed Segway robot kinetically and estimated an angle of inclination using the velocity that depends on input force. In pose control, also, we used PD controller and evaluated a stability of controller through MATLAB simulation. Assuming the robot keeps its balance stably using controller, we could linearize dynamics. We could obtain the result through the experiment which estimates an angle using the velocity of Segway robot that is derived from linearized dynamics.

A Study on the Vehicle Dynamics and Road Slope Estimation (차량동특성 및 도로경사도 추정에 관한 연구)

  • Kim, Moon-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.5
    • /
    • pp.575-582
    • /
    • 2019
  • Advanced driving assist system can support safety of driver and passengers which may require vehicle dynamics states as well as road geometry. It is essential to have in real-time estimation of related variables and parameters. Among the road geometry parameters, road slope angle which can not be measured is essential parameter in pose estimation, adaptive cruise control and others on sag road. In this paper, Kalman filter based method for the estimation of the vehicle dynamics and road slope angle using a nonlinear vehicle model is proposed. It uses a combination of Kalman filter as Cascade Extended Kalman Filter. CEKF uses measured vehicle states such as yaw rate, longitudinal/lateral acceleration and velocity. Unknown vehicle parameters such as center of gravity and inertia are obtained by 2 D.O.F lateral model and experimentally. Simulation and Experimental tests conducted with commercialized vehicle dynamics model and real-car.

Head Pose Estimation by using Morphological Property of Disparity Map

  • Jun, Se-Woong;Park, Sung-Kee;Lee, Moon-Key
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.735-739
    • /
    • 2005
  • This paper presents a new system to estimate the head pose of human in interactive indoor environment that has dynamic illumination change and large working space. The main idea of this system is to suggest a new morphological feature for estimating head angle from stereo disparity map. When a disparity map is obtained from stereo camera, the matching confidence value can be derived by measurements of correlation of the stereo images. Applying a threshold to the confidence value, we also obtain the specific morphology of the disparity map. Therefore, we can obtain the morphological shape of disparity map. Through the analysis of this morphological property, the head pose can be estimated. It is simple and fast algorithm in comparison with other algorithm which apply facial template, 2D, 3D models and optical flow method. Our system can automatically segment and estimate head pose in a wide range of head motion without manual initialization like other optical flow system. As the result of experiments, we obtained the reliable head orientation data under the real-time performance.

  • PDF

Pose Estimation of a Cylindrical Object Using Genetic Algorithm (유전자 알고리즘을 이용한 원기둥형 물체의 자세 추정 방법)

  • Jeong Kyuwon
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.54-59
    • /
    • 2005
  • The cylindrical object are widely used as mechanical parts in the manufacturing process. In order to handling those objects using a robot or an automated machine automatically, the pose of the object must be known. The pose can be described by two rotation angles; one angle about the x axis and the other about the y axis. In the many previous researches these angles were obtained by the computationally intensive algorithm, that is, fitting the data as a polynomial and doing pseudo inverse. So that, this method required high performance microprocessor. In this paper in order to avoid complex computation, a new method based on a genetic algorithm is proposed and analyzed through a series of simulations. This algorithm utilized the geometry of the cylindrical shape. The simulation results show that this method find the pose angles very well In most cases, but the computation time is randomly changed because the genetic algorithm is basically one of the random search method.