Park, Nyun-Bae;Kim, Kyung Taek;Park, Sangyong;Choi, Sang-jin;Hong, Jong-chul
Journal of Energy Engineering
/
v.29
no.3
/
pp.1-6
/
2020
A portfolio matrix analysis was conducted to improve R&D productivity of the government-funded R&D projects in the energy sector. 27 projects (42 detailed technologies) in 2018 were evaluated on a 5-point scale in terms of availability and technology competitiveness, and portfolio matrix analysis was conducted twice. The results of the portfolio matrix analysis could provide the landscape of on-going R&D projects at a time and could be utilized as feedback data to establish development strategies for individual projects, while establishing differentiated management directions to improve R&D productivity in each of the four areas of the portfolio matrix.
Journal of Korea Spatial Information System Society
/
v.9
no.3
/
pp.81-89
/
2007
We analyzed the technology portfolio matrix for the car navigation technology using QFD method and accordingly suggested the navigation technology development direction. QFD is a useful tool to analyze the customer demands and the technologies. Depending on the survey results from the latent customers and the technology capabilities from the study of the national institutions, we suggested technology portfolio matrix. The visual HMI technology, safe driving support technology, and the navigator information management technology are the most prospective area for R&D investment according to the portfolio matrix.
Journal of Korean Institute of Industrial Engineers
/
v.39
no.4
/
pp.260-270
/
2013
This paper proposes a strategic portfolio model for managing performance of online games. The portfolio matrix is composed of two dimensions: financial performance and non-financial performance. Financial performance is measured by the conventional measure, average revenue per user (ARPU). In terms of non-financial performance, five non-financial key performance indicators (KPIs) that have been widely used in the online game industry are utilized: RU (Register User), VU (Visiting User), TS (Time Spent), ACU (Average Current User), MCU (Maximum Current User). Data envelopment analysis (DEA) is then employed to produce a single performance measure aggregating the five KPIs. DEA is a linear programming model for measuring the relative efficiency of decision making unit (DMUs) with multiple inputs and outputs. This study employs DEA as a tool for multiple criteria decision making (MCDM), in particular, the pure output model without inputs. Combining the two types of performance produces the online game portfolio matrix with four quadrants: Dark Horse, Stop Loss, Jack Pot, Luxury Goods. A case study of 39 online games provided by company 'N' is provided. The proposed portfolio model is expected to be fruitfully used for strategic decision making of online game companies.
The Journal of Asian Finance, Economics and Business
/
v.7
no.9
/
pp.135-145
/
2020
This paper provides the practical application of a linear shrinkage framework on Vietnam stock market. The cumulative data points observed in this analysis are 468 weeks from January 2011 to December 2019. All the companies listed on Ho Chi Minh City Stock Exchange (HOSE), except the companies under two years period from Initial Public Offering (IPO), are considered. The cumulative number of stocks picked is therefore 350 companies. The VNINDEX, which is the Vietnam Stock Index, is used as a reference index for shrinking to a single-index model. The empirical results show that the shrinkage of covariance matrix for portfolio optimization gives the promising results for the investors on Vietnam stock market. The shrinkage method helps the investors to produce the optimal portfolio in the sense of having higher profit with lower levels of risk compared to the portfolio of the traditional SCM method. Moreover, the portfolio turnover of shrinkage method is always kept at low magnitudes, and this makes the shrinkage portfolios save much transaction costs and reduce the liquidity risks in the trading process. In addition, the ability of shrinkage method in making profit is once again confirmed by the Alpha coefficient that achieves a high positive value.
International conference on construction engineering and project management
/
2015.10a
/
pp.210-212
/
2015
The growth-share matrix is a portfolio planning tool developed by the Boston Consulting Group (BCG) to assist competitive positioning in the international market including those in the construction industry. This matrix is helpful in balancing the firm's cash-flow, and it can suggest strategic directions for each business unit. However, its effectiveness and applicability have long been debated in the academic field due to the complex and unique industrial context of construction. To solve the dispute, this research clarifies the applicability of theories underlying the growth-share matrix to the construction industry. Empirical research based on actual financial data of Korean construction firms is adopted for the statistical analysis including one-way analysis of variance and correlation analysis. The results of this research show that empirical findings on the relationship between performance variables. In this context, this research can provide important insights on the concept of portfolio management in the construction industry.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.6
/
pp.677-682
/
2018
The relationship-type research and development (R&D) portfolio is a method for selecting core technologies based on their unique purposes and characteristics when the criteria for selecting them are independent. This study presents a relationship-type R&D portfolio method as a way to derive core technologies, and describes the methodology by dividing it into three steps: 1) analyze the relationships between selection criteria and analytical indicators, 2) form a portfolio matrix that best matches each selection criteria, and 3) derive the core technologies. In this study, the relationships between four selection criteria for selecting core technologies and the analytical indicators for identifying the technology level, economics, and the technology itself, are written in a table with HoQ. Based on the relationship table, analytical indicators to be considered were derived to satisfy each selection criterion, and the derived analytical indicators and the selected technologies were constructed with two axes in the portfolio matrix. The satisfied portfolio, P0, that satisfies all four criteria, and the portfolio, P1~P4, that satisfies selection criteria based on the unique characteristics of the four criteria, were constructed, and core technologies derived. The selected core technologies can be utilized in selecting a core area against the future security environment through a process like key word analysis based on the specifications.
Journal of the Korean Operations Research and Management Science Society
/
v.39
no.4
/
pp.137-152
/
2014
In this paper, I suggest several techniques to estimate covariance matrix and compare the performance of the global minimum variance portfolio (GMVP) in terms of out of sample mean standard deviation and return. As a result, the return differences among the GMVPs are insignificant. The mean standard deviation of the GMVP using historical covariance is sensitive to the estimation window and the number of assets in the portfolio. Among the model covariance, the GMVP using constant systematic risk ratio model or using short sale restriction shows the best performance. The performance difference between the GMVPs using historical covariance and model covariance becomes insignificant as the historical covariance is estimated with longer estimation window. Lastly, the implied volatilities from ELW prices do not lead to superior performance to the historical variance.
Recently banks and large financial institutions have introduced lots of Robo-Advisor products. Robo-Advisor is a Robot to produce the optimal asset allocation portfolio for investors by using the financial engineering algorithms without any human intervention. Since the first introduction in Wall Street in 2008, the market size has grown to 60 billion dollars and is expected to expand to 2,000 billion dollars by 2020. Since Robo-Advisor algorithms suggest asset allocation output to investors, mathematical or statistical asset allocation strategies are applied. Mean variance optimization model developed by Markowitz is the typical asset allocation model. The model is a simple but quite intuitive portfolio strategy. For example, assets are allocated in order to minimize the risk on the portfolio while maximizing the expected return on the portfolio using optimization techniques. Despite its theoretical background, both academics and practitioners find that the standard mean variance optimization portfolio is very sensitive to the expected returns calculated by past price data. Corner solutions are often found to be allocated only to a few assets. The Black-Litterman Optimization model overcomes these problems by choosing a neutral Capital Asset Pricing Model equilibrium point. Implied equilibrium returns of each asset are derived from equilibrium market portfolio through reverse optimization. The Black-Litterman model uses a Bayesian approach to combine the subjective views on the price forecast of one or more assets with implied equilibrium returns, resulting a new estimates of risk and expected returns. These new estimates can produce optimal portfolio by the well-known Markowitz mean-variance optimization algorithm. If the investor does not have any views on his asset classes, the Black-Litterman optimization model produce the same portfolio as the market portfolio. What if the subjective views are incorrect? A survey on reports of stocks performance recommended by securities analysts show very poor results. Therefore the incorrect views combined with implied equilibrium returns may produce very poor portfolio output to the Black-Litterman model users. This paper suggests an objective investor views model based on Support Vector Machines(SVM), which have showed good performance results in stock price forecasting. SVM is a discriminative classifier defined by a separating hyper plane. The linear, radial basis and polynomial kernel functions are used to learn the hyper planes. Input variables for the SVM are returns, standard deviations, Stochastics %K and price parity degree for each asset class. SVM output returns expected stock price movements and their probabilities, which are used as input variables in the intelligent views model. The stock price movements are categorized by three phases; down, neutral and up. The expected stock returns make P matrix and their probability results are used in Q matrix. Implied equilibrium returns vector is combined with the intelligent views matrix, resulting the Black-Litterman optimal portfolio. For comparisons, Markowitz mean-variance optimization model and risk parity model are used. The value weighted market portfolio and equal weighted market portfolio are used as benchmark indexes. We collect the 8 KOSPI 200 sector indexes from January 2008 to December 2018 including 132 monthly index values. Training period is from 2008 to 2015 and testing period is from 2016 to 2018. Our suggested intelligent view model combined with implied equilibrium returns produced the optimal Black-Litterman portfolio. The out of sample period portfolio showed better performance compared with the well-known Markowitz mean-variance optimization portfolio, risk parity portfolio and market portfolio. The total return from 3 year-period Black-Litterman portfolio records 6.4%, which is the highest value. The maximum draw down is -20.8%, which is also the lowest value. Sharpe Ratio shows the highest value, 0.17. It measures the return to risk ratio. Overall, our suggested view model shows the possibility of replacing subjective analysts's views with objective view model for practitioners to apply the Robo-Advisor asset allocation algorithms in the real trading fields.
Nowadays, BIM(Building Information Modeling) technology has been slowly accepted and developed around the world, making smart construction possible. Many countries are also actively promoting the comprehensive application of BIM and changing the traditional construction methods of the construction industry. This study reviews foreign and domestic literature reviews on BIM application barriers and smart construction applications, providing a theoretical basis for Chinese construction enterprises to reduce or eliminate BIM application barriers. Based on the common feature of policies or strategies that promote the development of smart construction in developed countries, such as the United States, the United Kingdom, and Singapore, the deficiencies of China's smart construction policies for construction enterprises are analyzed. Moreover, according to the literature review of the development status of China's construction industry, the SWOT analysis matrix of China's smart construction strategy is obtained. Finally, based on the SWOT matrix analysis results, combined with the development status of China's construction industry and the obstacles faced by smart construction, the portfolio strategies and recommendations for the development of smart construction are proposed in this work. These portfolio strategies and recommendations can provide a reference value for construction enterprises.
Purpose - This study empirically investigates whether the risk property included in fat-tails of return distributions is systematic or unsystematic based on the devised statistical methods. Design/methodology/approach - This study devised empirical designs based on two traditional methods: principal component analysis (PCA) and the testing method of portfolio diversification effect. The fatness of the tails in return distributions is quantitatively measured by statistical probability. Findings - According to the results, the risk property in the fat-tails of return distributions has the economic meanings of eigenvalues having a value greater than 1 through PCA, and also systematic risk that cannot be removed through portfolio diversification. In other words, the fat-tails of return distributions have the properties of the common factors, which may explain the changes of stock returns. Meanwhile, the fatness of the tails in the portfolio return distributions shows the asymmetric relationship of common factors on the tails of return distributions. The negative tail in the portfolio return distribution has a much closer relation with the property of common factors, compared to the positive tail. Research implications or Originality - This empirical evidence may complement the existing studies related to tail risk which is utilized in pricing models as a common factor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.