• Title/Summary/Keyword: Port Handling Capacity

Search Result 56, Processing Time 0.029 seconds

A Study on Re-calculate of Handling Capacity for Container Terminal (컨테이너 터미널 하역능력 재산정에 관한 연구)

  • 송용석;남기찬;곽규석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.407-412
    • /
    • 2004
  • A problem of handling capacity calculation of berth is very important factor for decision about a port development scale like as the number of berth, size of back storage yard. If handling capacity per berth calculated low, the number of berth is increasing and the size of yard decided for propriety level of handling capacity. The propose of this paper is re-calculate of handling capacity for Busan container port by firstly government plan and actual result of Busan port like as waiting rate, berth share and handling capacity, and then realistic number of crane and berth share to be applied.

  • PDF

Estimation of the Handing Capacity of Container Terminals Using Simulation Techniques (시뮬레이션 기법을 이용한 컨테이너 터미널 하역 능력 추정)

  • 장성용
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.53-66
    • /
    • 1996
  • Container handling facilities in Korean ports have increased rapidly according to Korean industrialization and the worldwide containerization. Over 98% of total containers handles in Korean ports are handled in Puan ports. This paper presents the estimation method of annual container handling capacity of container terminals by the computer simulation models. Simulation models are developed utilizing SIMAN IV simulation package. Annual handling capacity of real container terminals such as BCTOC and PECT was estimated by the proposed simulation models. Also, Annual handling capaicty of planned or expected terminals in Puan port was estimated. The comparisons between container forecast demand and estimated handling capacity of Pusan port from 1996 through 2001 were made. It showed that Pusan port will have over two million TEU handling capacity shortage during that period and will face enormous port congestion. Lastly, mid term and long-term capacity expansion plansof container terminals in korean ports were discussed.

  • PDF

A Study of Dynamic Forecast on Port Container Handling Capacity (항만 컨테이너 처리능력의 통계적 예측에 관한 연구)

  • Feng, Zhan-Qing;Lee, Su-Ho
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.161-166
    • /
    • 2002
  • In view of the great disparity between forecasts of Shanghai port container handling capacity and its real results, we choose a dynamic forecast method by the causality model dynamic compensation to predict Shanghai port container handling capacity. And we forecast Shanghai port container handling capacity by using this method. We have made a satisfactory achievement, which provides a more reliable and practical way to forecast container handling capacity.

On the Cost Analysis of Container Physical Distribution System in Pusan Port (부산항 컨테이너 물류 시스템의 비용분석에 관하여)

  • 박창호;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.3
    • /
    • pp.13-24
    • /
    • 1991
  • This paper aims to determining the optimal capacity of Pusan port in view point of Container Physical Distribution cost. It has been established a coast model of the container physical distribution system in Pusan port is composed of 4 sub-systems and in-land transport system. Cargo handling system, transfer & storage system and in-land transport system, and analyzed the cost model of the system. From this analysis, we found that the system had 7 routes including in-land transport by rail or road and coastal transport by feeder ship between Pusan port and cargo owner's door. Though railway transport cost was relatively cheap, but, it was limited to choose railway transport routes due to the introducing of transport cargo allocation practice caused by shortage of railway transport capacity. The physical distribution ost for total import & export container through Pusan port was composed of 4.47% in port entring cost, 12.98% in cargo handling cost, 7.44% in transfer & storage cost and 75.11% in in-land transport cost. Investigation in case of BCTOC verified the results as follows. 1) The optimal level of one time cargo handling was verified 236VAN (377TEU) and annual optimal handling capacity was calculated in 516, 840VAN(826, 944TEU) where berth occupancy is $\rho$=0.6 when regardless of port congestion cost, 2) The optimal level of one time cargo handling was verified 252VAN (403TEU) and annual optimal handling capacity was calculated in 502, 110VAN (803, 376TEU) where berth occupancy is $\rho$=0.58 when considering of port congestion cost.

  • PDF

A Study on Determining the Optimal Amount of Labor Force for Cargo Handling in the Harbor (항만 하역 노동력의 최적 규모 결정에 관하여)

  • Lee, Cheol-Yeong;Jang, Yeong-Jun
    • Journal of Korean Port Research
    • /
    • v.3 no.1
    • /
    • pp.35-55
    • /
    • 1989
  • Today, about 99% of total import and export cargo in Korea is being transported through the port. The general trends of cargo handling show increases in capacity and speed, In order to cope with these trends, it is not only required to raise the efficiencies of port operation and function but also necessary to decide the optimal amount of the skilled labor force for cargo handling in the port. Cargo handling in the port is basically relied on the cargo handling facilities. Therefore, it is very important to reserve the amount of labor force for cargo handling system has been developed up to a certain level but the personnel management system which is the superior structure has not been followed well. In this study, therefore, we show a method to determine the required amount of labor force for cargo handling considering the amount of cargo and type of cargo handling work per each cargo, and the optimal amount labor force in cope with the fluctuation of the basic cargo handling labor force with respect to the time of in and out cargo flow in the viewpoint of minimizing the expences due to reservation of extra labor force than needed and firing employment of labor force using the Dynamic Programming. The derived algorithm is introduced into the computer simulation for Pusan port with the analyzed real data such as amount of cargo handling in the port with respect to working hour, cargo capacity, working step, the ratio of cargo handling facility and actual number of workers and we estimated the required labor force. As a result of analysis the labor force of Pusan port showed the over-employment such as maximum 21.4%, minimum 8.2% when we assumed that the averages of actual working hours and days were 8 hours in a day and 20 day in a month.

  • PDF

PORT EXPANSION SIMULATION MODEL

  • 노용덕
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1992.10a
    • /
    • pp.1-1
    • /
    • 1992
  • This paper presents a user-oriented port expansion simulation model that determines the future economic port capacity to meet the projected demand. The model consists of two parts; a physical impact simulation, and an economic impact simulation. The first part of the model simulates the effects caused by the port capacity expansion. The second part evaluates the port economics due to changes in the port capacity. The model was validated by applying it to the actual port expansion followed at the Port of Mobile, Alabama. A case study is then presented to demonstrate the capacity of the model with a coal handling port, the McDuffie Terminals at the Port of Mobile.

  • PDF

A study on the estimation of container terminal capacity and its implication to port development planning of Korea (국내 컨테이너 부두시설 확보제도 개선방향 연구)

  • Yang, Chang-Ho
    • Journal of Korea Port Economic Association
    • /
    • v.26 no.3
    • /
    • pp.198-220
    • /
    • 2010
  • This paper investigate the problems of standard container port handling capacity in establishing national port development plan in Korea. Considering container port developing, it's not easy to adopt container port service quality parameters such as lay time constraint of very large container ships by using the standard guideline of container port handling capacity. A simple methodology that connects vessel waiting to service time(w/s) and berth occupancy to costs has been used to evaluate the performance of a container terminal. But the total handling capacity have to be calculated by the performance of the handling system and number of equipments and layout of terminal by using computer simulation that represents of reality events needs to be performed by probabilistic techniques. A simulation model of estimation of container terminal capacity is introduced in order to establish a hub terminal for very large container ships that focus the port's quality of service and also suggest as tool for policy maker to justify a required port investment.

A Study on the Estimation Model of the Proper Cargo Handling Capacity based on Simulation in Port - Port Cargo Exclusive Pier Example - (항만에서 시뮬레이션 기반 적정하역능력 산정 모델에 관한 연구 - 항만 화물 전용부두 중심으로 -)

  • Park, Sang-Kook;Park, Nam-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2454-2460
    • /
    • 2013
  • So far, the port cargo handling capacity of general cargo was computed using simple formulae based on mathematical models. However, this simple calculation could not be able to reflect the reality. Thus, the simulation method was applied in this paper to overcome the limitation that the calculation method used in the past studies has. The process occurring from arrival to departure of a ship, which is reflecting the process rules of berth, was modeled to estimate the optimum level of handling capacity by using an example of the loading and unloading of an appropriated wharf at the harbor, and simulation was performed by developing the prototype. The actual processing capability of Mukho port was compared to the estimated capability calculated using the simulation method and the optimum level of capability could be computed by repeatedly simulating the input variable condition of the simulation prototype.

An Empirical Study on Berth-Length Calculation of Container Terminal (컨테이너 터미널 선석길이 산정에 관한 실증 연구)

  • Song, Yong-Seok;Nam, Ki-Chan;Yeon, Jeong-Hum;Kim, Jeong-Eun
    • Journal of Navigation and Port Research
    • /
    • v.27 no.2
    • /
    • pp.179-184
    • /
    • 2003
  • In order to mitigate the overcapacity of Busan port, Busan new port has been developed as transshipment port which is capable of handling 8,000 TEU containership. Generally, design of transshipment port has to reflect the capacity of feeder because both mother vessels and feeders enter the planned port at the same time. However, the existing plan of Busan new port capacity needs to be reexamined since the adopted capacity of each berth at new port, 300,000 TEU, does not seem to be enough to handle both mother vessels and feeders. Therefore, in this study we calculated the required number of berth and berth length by considering cargo handling capacity in terms of the ship size and this study makes some implications in relation with the terminal development plan.

A Study on Changes in Competitive Factors: focused on Asian Neighbor ports (항만경쟁요인의 변화에 관한 연구 - 아시아 역내 인접 항만을 중심으로 -)

  • 이충배;이정민;양재훈
    • Journal of Korea Port Economic Association
    • /
    • v.19 no.1
    • /
    • pp.43-68
    • /
    • 2003
  • With development of Asia's economy, the ports in trunk route have increased its handling capacity According to previous studies, main determinants to become hub-port are referred to location, connection inland transport with hinterland, port service availability and efficiency, cost of port handling, socio-economic stability and port information system etc. This study aims to investigate the changes in factors determine port's competitiveness particularly in Asian neighbor ports such as Hong Kong port and Shenzen port, and Singapore port and the Port of Tanjung Pelapas in Malaysia by comparing and analyzing main indicators relating to those ports. In conclusion, main reasons which gained competitiveness by newly developed ports such as Shenzen port and the Port of Tanjung Pelapas were port price and massive hinterland space offered.

  • PDF