• Title/Summary/Keyword: Porous scaffold

검색결과 88건 처리시간 0.026초

폴리머 적층 시스템과 염 침출법을 결합한 3차원 다공성 인공지지체 제작 (A Study on Fabrication of 3D Porous Scaffold Combined with Polymer Deposition System and a Salt Leaching Method)

  • 심해리;사민우;김종영
    • 한국기계가공학회지
    • /
    • 제15권5호
    • /
    • pp.86-92
    • /
    • 2016
  • In this study, we used a polymer deposition system, based on fused deposition modeling, to fabricate the 3D scaffold and then fabricated micro-pores on a 3D scaffold using a salt leaching method. Materials included polycaprolactone (PCL) and sodium chloride (NaCl). The 3D porous scaffolds were fabricated according to blending ratio such as PCL (70 wt%)/NaCl (30 wt%) and PCL (50 wt%)/NaCl (50 wt%). The 3D porous scaffolds were observed by scanning electron microscopy. The results showed that 3D porous scaffolds had a deposition width of $500{\mu}m$, contained a pore size of $500{\mu}m$ and below $100{\mu}m$. To evaluate the 3D porous scaffolds for bone tissue engineering, we carried out the cell proliferation experiment using a CCK-8 and a mechanical strength test using a universal testing machine. In summary, the 3D porous scaffold was found to be suitable for cancellous bone of human in accordance with the result of in-vitro cell proliferation and mechanical strength. Thus, a 3D porous scaffold could be a promising approach for effective bone regeneration.

열처리에 의해 가교된 다공성 키토산-알지네이트-젤라틴 지지체의 특성 (Characteristics of porous Chitosan-Alginate-Gelatin Scaffold Cross-linked by Heat-treatment)

  • 신병철;최민수;한희동;성하수;박은석;지상철
    • 대한화학회지
    • /
    • 제50권3호
    • /
    • pp.224-231
    • /
    • 2006
  • 소재로 제조된 다공성 지지체의 기계적 물성 향상을 위해서 사용되는 가교제는 세포독성으로 인해 지지체의 생체적합성을 저하시킨다. 본 연구에서 키토산, 알지네이트 및 젤라틴으로 제조된 다공성 지지체는 가교제를 사용하지 않고 열처리에 의해 가교시키고, 가교된 다공성 지지체의 물성을 조사하였다. FT-IR분광분석을 통해 열처리된 다공성 지지체의 가교는 고분자 쇄간의 아미드 또는 에스테르 결합에 의해 형성되었음을 확인하였다. 열처리 다공성 지지체는 100~200m크기의 연결된 공극 구조를 형성하였고, 가교제 처리 다공성 지지체에 비해 수분 흡수력은 2배 이상 향상되었다. 열처리 다공성 지지체의 인장강도는 가교하지 않은 다공성 지지체에 비해 130% 이상 향상되었고, 최대 신장률은 가교처리 다공성 지지체보다 11.3% 향상되었다. 따라서 열처리로 물성을 증가시킨 천연고분자 소재의 다공성 지지체는 생체적합성이 우수한 조직공학용 지지체로서 유용하다.

Fabrication and Characterization of Porous TCP coated Al2O3 Scaffold by Polymeric Sponge Method

  • Sarkar, Swapan Kumar;Kim, Young-Hee;Kim, Min-Sung;Min, Young-Ki;Yang, Hun-Mo;Song, Ho-Yeon;Lee, Byong-Taek
    • 한국세라믹학회지
    • /
    • 제45권10호
    • /
    • pp.579-583
    • /
    • 2008
  • A porous $Al_2O_3$, scaffold coated with tricalcium phosphate(TCP) was fabricated by replica method using polyurethane(PU) foam as a fugitive material. Successive coatings of $Al_2O_3$ and hydroxyapatite(HAp) were applied via dip coating onto polyurethane foam, which has a slender and well interconnected network. A porous structure was obtained after sequentially burning out the foam and then sintering at $1500^{\circ}C$. The HAp phase was changed to TCP phase at high temperature. The scaffold showed excellent interconnected porosity with pore sizes ranging from $300{\sim}700{\mu}m$ in diameter. The inherent well interconnected structural feature of PU foam remained intact in the fabricated porous scaffold, where the PU foam material was entirely replaced by $Al_2O_3$ and TCP through a consecutive layering process. Thickness of the $Al_2O_3$ base and the TCP coating was about $7{\sim}10{\mu}m$ each. The TCP coating was homogeneously dispersed on the surface of the $Al_2O_3$ scaffold.

Materal properties of Porous BCP Scaffolds depending on the process conditions

  • 박이호;김민성;민영기;송호연;이병택
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.44.2-44.2
    • /
    • 2009
  • BCP powder was synthesized using microwave hydrothermal process with mixed calcium hydroxide and phosphoric acid. After using replica method, porous BCP scaffold was fabricated. PU (Poly Urethane) was used as the fugitive skeleton to fabricate the porous scaffold. BCP powder was mixed in PVB (Polyvinyl butyral) and ethanol solution and then applied to the PU foam by dip coating. After several times of coating and the subsequent oven drying the coated PU foam was burnt out at $750^{\circ}C$ at air to remove the PU. The resulting networked porous composites were sintered at $1250^{\circ}C$, $1300^{\circ}C$ and $1350^{\circ}C$ in microwave furnace for 30 minutes. Material properties of the porous bodies like compressive strength and porosity were investigated. Detailed microstructure of the BCP porous body was characterized by SEM and XRD and TEM techniques. In our experiments, the relationship between mechanical property and viscosity of powder, sintering temperature was investigated.

  • PDF

Characteristics and osteogenic effect of zirconia porous scaffold coated with ${\beta}$-TCP/HA

  • Song, Young-Gyun;Cho, In-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권4호
    • /
    • pp.285-294
    • /
    • 2014
  • PURPOSE. The purpose of this study was to evaluate the properties of a porous zirconia scaffold coated with bioactive materials and compare the in vitro cellular behavior of MC3T3-E1 preosteoblastic cells to titanium and zirconia disks and porous zirconia scaffolds. MATERIALS AND METHODS. Titanium and zirconia disks were prepared. A porous zirconia scaffold was fabricated with an open cell polyurethane disk foam template. The porous zirconia scaffolds were coated with ${\beta}$-TCP, HA and a compound of ${\beta}$-TCP and HA (BCP). The characteristics of the specimens were evaluated using scanning electron microscopy (SEM), energy dispersive x-ray spectrometer (EDX), and x-ray diffractometry (XRD). The dissolution tests were analyzed by an inductively coupled plasma spectrometer (ICP). The osteogenic effect of MC3T3-E1 cells was assessed via cell counting and reverse transcriptase-polymerase chain reaction (RT-PCR). RESULTS. The EDX profiles showed the substrate of zirconia, which was surrounded by the Ca-P layer. In the dissolution test, dissolved $Ca^{2+}$ ions were observed in the following decreasing order; ${\beta}$-TCP > BCP > HA (P<.05). In the cellular experiments, the cell proliferation on titanium disks appeared significantly lower in comparison to the other groups after 5 days (P<.05). The zirconia scaffolds had greater values than the zirconia disks (P<.05). The mRNA level of osteocalcin was highest on the non-coated zirconia scaffolds after 7 days. CONCLUSION. Zirconia had greater osteoblast cell activity than titanium. The interconnecting pores of the zirconia scaffolds showed enhanced proliferation and cell differentiation. The activity of osteoblast was more affected by microstructure than by coating materials.

Porous Hyaluronic Acid-Gelatin Loaded Sponge Biphasic Calcium Phosphate Scaffold for Bone Implant Application

  • Nguyen, Thuy Ba Linh;Kim, Shin-Woo;Min, Young-Ki;Yang, Hun-Mo;Lee, Byong-Taek
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.35.2-35.2
    • /
    • 2011
  • In this study, hyaluronic acid (HyA) - Gelatin (Gel) hydrogels were prepared at ratio of 15:85 with the goal of obtaining a high uniform porosity and porous biocompatibility scaffold for bone tissue engineering applications. In order to develop a proper scaffold for bone implant application, a HyA-Gel hydrogel loaded in sponge Biphasic Calcium Phosphate (BCP) was prepared. To assay the cytocompatibility and cell behavior on the HyA-Gel hydrogel and HyA-Gel/BCP scaffold, cell attachment and spreading of MSCs seeded on the scaffolds were studied. An invivo study was performed for HyA-Gel/BCP scaffolds after 1 and 3 months implantation. Our results provide a novel and simple method to obtain an adequate scaffold for osteoblast cells and indicate that HyA-Gel hydrogel and HyA-Gel/BCP scaffold could be a good candidate for bone tissue engineering scaffolds.

  • PDF

PCL Infiltration into a BCP Scaffold Strut to Improve the Mechanical Strength while Retaining Other Properties

  • Kim, Min-Sung;Kim, Yang-Hee;Park, Ih-Ho;Min, Young-Ki;Seo, Hyung-Seok;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.331-337
    • /
    • 2010
  • A highly porous Biphasic Calcium Phosphate (BCP) scaffold was fabricated by the sponge replica method with a microwave sintering technique. The BCP scaffold had interconnected pores ranging from $80\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To enhance the mechanical properties of the porous scaffold, infiltration of polycaprolactone (PCL) was employed. The microstructure of the BCP scaffold was optimized using various volume percentages of polymethylmethacrylate (PMMA) for the infiltration process. PCL successfully infiltrated into the hollow space of the strut formed after the removal of the polymer sponge throughout the degassing and high pressure steps. The microstructure and material properties of the BCP scaffold (i.e., pore size, morphology of infiltrated and coated PCL, compressive strength, and porosity) were evaluated. When a 30 vol% of PMMA was used, the PCL-BCP scaffold showed the highest compressive strength. The compressive strength values of the BCP and PCL-BCP scaffolds were approximately 1.3 and 2MPa, respectively. After the PCL infiltration process, the porosity of the PCL-BCP scaffold decreased slightly to 86%, whereas that of the BCP scaffold was 86%. The number of pores in the $10\;{\mu}m$ to $20\;{\mu}m$ rage, which represent the pore channel inside of the strut, significantly decreased. The in-vitro study confirmed that the PCL-infiltrated BCP scaffold showed comparable cell viability without any cytotoxic behavior.

쾌속조형시스템을 이용한 생체 조직 재생용 지지체 제작과 특성분석 (Bio-degradable 3D-scaffold fabrication using rapid-prototyping system)

  • 김지웅;박고은;이준희;박수아;김완두
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1697-1699
    • /
    • 2008
  • The purpose of tissue engineering is to repair or replace damaged tissues or organs by a combination of cells, scaffold, suitable biochemical and physio-chemical factors. Among the three components, the biodegradable scaffold plays an important role in cell attachment and migration. In this study, we designed 3D porous scaffold by Rapid Prototyping (RP) system and fabricated layer-by-layer 3D structure using Polycarprolactone (PCL) - one of the most flexible biodegradable polymer. Furthermore, the physical and mechanical properties of the scaffolds were evaluated by changing the pore size and the strand diameter of the scaffold. We changed nozzle diameter (strand diameter) and strand to strand distance (pore size) to find the effect on the mechanical property of the scaffold. And the surface morphology, inner structure and storage modulus of PCL scaffold were analyzed with SEM, Micro-CT and DMA.

  • PDF

Improvement of the Representative Volume Element Method for 3-D Scaffold Simulation

  • Cheng Lv-Sha;Kang Hyun-Wook;Cho Dong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1722-1729
    • /
    • 2006
  • Predicting the mechanical properties of the 3-D scaffold using finite element method (FEM) simulation is important to the practical application of tissue engineering. However, the porous structure of the scaffold complicates computer simulations, and calculating scaffold models at the pore level is time-consuming. In some cases, the demands of the procedure are too high for a computer to run the standard code. To address this problem, the representative volume element (RVE) theory was introduced, but studies on RVE modeling applied to the 3-D scaffold model have not been focused. In this paper, we propose an improved FEM-based RVE modeling strategy to better predict the mechanical properties of the scaffold prior to fabrication. To improve the precision of RVE modeling, we evaluated various RVE models of newly designed 3-D scaffolds using FEM simulation. The scaffolds were then constructed using microstereolithography technology, and their mechanical properties were measured for comparison.