• 제목/요약/키워드: Porous particle

검색결과 376건 처리시간 0.024초

이온성액체를 이용한 다공성 산화세륨 합성 (Preparation and Characterization of Porous CeO2 Using Ionic Liquids)

  • 유계상;이부호
    • 공업화학
    • /
    • 제20권3호
    • /
    • pp.313-316
    • /
    • 2009
  • 다양한 조성의 이온성액체(Ionic liquid, ILs)를 사용하여 다공성 산화세륨 입자를 제조하였다. 이온성액체의 조성에 따라서 제조된 산화세륨 입자의 세공구조 및 결정의 모양이 달라지는 것을 관찰하였다. 이온성액체에서 음이온의 수소결합력 세기는 산화세륨의 세공을 형성하는데 결정적인 요인으로 작용하며, 양이온인 알킬 그룹의 길이에 따라 산화세륨 입자의 세공 크기 및 비표면적이 변하는 것을 확인할 수 있었다. 여러 가지 이온성액체 중에서 1-Buthyl-3-methylimidazolium hexafluorophosphate가 다공성 산화세륨 입자를 제조하는데 가장 효과적이었다.

냉동 후막 성형에 의한 다공성 Al2O3 필름 제조 (Fabrication of Porous Al2O3 Film by Freeze Tape Casting)

  • 신란희;구준모;김영도;한윤수
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.438-442
    • /
    • 2015
  • Porous thick film of alumina which is fabricated by freeze tape casting using a camphene-camphor-acrylate vehicle. Alumina slurry is mixed above the melting point of the camphene-camphor solvent. Upon cooling, the camphene-camphor crystallizes from the solution as particle-free dendrites, with the $Al_2O_3$ powder and acrylate liquid in the interdendritic spaces. Subsequently, the acrylate liquid is solidified by photopolymerization to offer mechanical properties for handling. The microstructure of the porous alumina film is characterized for systems with different cooling rate around the melting temperature of camphor-camphene. The structure of the dendritic porosity is compared as a function of ratio of camphene-camphor solvent and acrylate content, and $Al_2O_3$ powder volume fraction in acrylate in terms of the dendrite arm width.

석탄연소 보일러에서 생성된 석탄회의 분석과 형성 메커니즘 해석에 대한 연구 (A Study on the Formation Mechanism of the Fly Ash from Coal Particles in the Coal Burning Boiler)

  • 이정언;이재근
    • 대한기계학회논문집B
    • /
    • 제22권12호
    • /
    • pp.1691-1701
    • /
    • 1998
  • Fly ash produced in coal combustion is a fine-grained material consisting mostly of spherical, glassy, and porous particles. A study on the formation mechanism of the fly ash from coal particles in the pulverized coal power plant is investigated with a physical, morphological, and chemical characteristic analysis of fly ash collected from the Samchonpo power plant. This study may contribute to the data base of domestic fly ash, the improvement of combustion efficiency, fouling phenomena and ash collection in the electrostatic precipitator. The physical property of fly ash is determined using a particle counter for the measurement of ash size distribution. Morphological characteristic of fly ash is performed using a scanning electron micrograph. The chemical components of fly ash are determined using an inductively coupled plasma emission spectrometry(ICP). The distribution of fly ash size was bi-modal and ranged from 12 to $19{\mu}m$ in mass median diameter. Exposure conditions of flue gas temperature and duration within the combustion zone of the boiler played an important role on the morphological properties of the fly ash such as shape, particle size and chemical components. The evolution of ash formation during pulverized coal combustion has revealed three major mechanisms by large particle formation due to break-up process, gas to particle conversion and growth by coagulation and agglomeration.

고수분 환경에서 미세먼지 실시간 측정을 위한 다공 튜브형 희석장치의 개발 및 성능 평가 (Development and performance evaluation of the porous tube dilutor for real-time measurements of fine particles from high humidity environments)

  • 우창규;홍기정;김학준;김용진;한방우;안정언;강수지;천성남
    • 한국입자에어로졸학회지
    • /
    • 제13권3호
    • /
    • pp.105-110
    • /
    • 2017
  • 본 연구에서는 고온희석-상온희석 2단 희석의 다공 튜브형 희석장치를 제작하여 실제 배기가스와 시험챔버의 다양한 고수분 환경에서의 희석 조건에 따른 응축성 물질의 생성 억제와 생성된 응축 입자의 제거 특성에 관하여 살펴보았다. 디젤 엔진의 배출 입자는 응축 성분의 핵화 모드와 고체상의 응축성장 모드의 이중모드 분포를 나타내었고, 다공 튜브형 희석장치의 1차 고온희석 유량을 증가시킴으로써 핵화 모드 입자의 생성을 억제시키고 응축성장 모드의 입자만을 측정할 수 있었다. 석탄보일러에서 배출되는 미세먼지에 대해서도 다공 튜브형 희석장치를 적용하여 응축성 성분의 입자 생성 없이 응축성장 모드의 입자만을 측정할 수 있었고, $3{\mu}m$ 크기 이상의 입자에 대해서 기존 이젝터 방식에 비해 상대적으로 입자 손실이 적음을 확인할 수 있었다. 또한 $30m^3$ 시험챔버에서 가습기로 인위적으로 발생시킨 물입자가 측정하고자 하는 고체 입자와 공존할 때 다공 튜브형 희석장치를 사용하여 물입자를 증발시켜 제거함으로써 고체 입자만을 정확하게 분리하여 측정할 수 있음을 확인할 수 있었다.

도공층 조성 및 구조의 잉크흡수성에 대한 영향 (The influences of coating components and structures on ink absorbency)

  • 곽상효;김진현
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 1999년도 춘계학술발표논문집
    • /
    • pp.7-16
    • /
    • 1999
  • The aim of this research was to evaluate the influences of coating components and structures on ink absorbency. The ink absorbency was measured as porosity, K&N ink absorption, gloss and ink set-off. In order to obtain the relationship between the coating structure and the ink absorbency, the binder level was adjusted and two types of pigments were examined. One of the pigments was known to make the porous coating structure and the other one had strong ink affinity. The effects of coating components were studied by applying six different types of latex and various additives . In this research, CLC(cylindrical laboratory coater) and Prufbau printability tester were used. It was found that the decreasing latex dosage and introducing porous pigment were effective solutions to increase ink absorbency. However, the ink absorbency could not be improved by applying the fine pigment even though it had strong ink affinity. Among the characters of the latex, particle size and surface tension were found to have the strong effect on ink absorbency. The ink absorbency increased with large particle size and low surface tension latex. The additives were varied and it was found that applying to the top coating was effective.

  • PDF

액상-고체입자 혼합물의 응고 시 응고계면에서의 입자의 거동 (Interaction of Solid Particles with the Solidifying Front in the Liquid-Particle Mixture)

  • 이호석;이규희;오승탁;김영도;석명진
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.336-339
    • /
    • 2018
  • A unique porous material with controlled pore characteristics can be fabricated by the freeze-drying process, which uses the slurry of organic material as the sublimable vehicle mixed with powders. The essential feature in this process is that during the solidification of the slurry, the dendrites of the organic material should repel the dispersed particles into the interdendritic region. In the present work, a model experiment is attempted using some transparent organic materials mixed with glass powders, which enable in-situ observation. The organic materials used are camphor-naphthalene mixture (hypo- and hypereutectic composition), salol, camphene, and pivalic acid. Among these materials, the constituent phases in camphor-naphthalene system, i.e. naphthalene plate, camphor dendrite, and camphor-naphthalene eutectic exclusively repel the glass powders. This result suggests that the control of organic material composition in the binary system is useful for producing a porous body with the required pore structure.

SPG 막유화법을 이용한 고분자 입자 제조기술의 동향 (Technology Trend for the Preparation of Polymeric Particles by SPG Technique)

  • 이상국;김성욱;최경호;임은희
    • Elastomers and Composites
    • /
    • 제44권3호
    • /
    • pp.222-231
    • /
    • 2009
  • 단분산이면서 마이크로 크기의 입자로 쉽게 조절이 가능한 SPG (Shirasu porous glass) 막유화법이 최근 각광을 받고 있다. SPG 막유화법은 다중에멀젼, 단분산, 다양한 형태 등을 쉽게 제조할 수 있는 장점을 가지고 있어서 기능성 입자를 만드는데 적합한 방법으로 최근 적용분야로는 토너입자, 식품첨가제, 약물전달 등으로 적용분야가 넓다. SPG 막유화법에서 입자크기 및 형태 조절 요소로는 개시제, 첨가제, 단량체, 가교제, 중합금지제 등이 있으며, SPG의 장점인 단분산을 싼 단가로 대량생산에 접목시킬 수 있기 때문에 여러 분야에서 다양한 접근이 가능하다.

Recovery of cesium ions from seawater using a porous silica-based ionic liquid impregnated adsorbent

  • Wu, Hao;Kudo, Tatsuya;Kim, Seong-Yun;Miwa, Misako;Matsuyama, Shigeo
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1597-1605
    • /
    • 2022
  • A porous silica-based adsorbent was prepared by impregnating the pores of a silica support with the extractant 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14) and an additive agent 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C2mim + NTf-2) as the materials to remove cesium(I) (Cs+) ions from seawater. The as-prepared adsorbent showed excellent adsorption performance toward Cs+ ions, with adsorption equilibrium reached within 2 h and an adsorption amount of 0.196 mmol/g observed. The solution pH, temperature, and the presence of coexisting metal ions were found to have almost no effect on Cs+ adsorption. The adsorption mechanism was considered to proceed via ion exchange between Cs+ and C2mim+. In addition, the particle-induced X-ray emission analysis results further clarified that the adsorbed Cs+ ion species on the adsorbent was in the form of both CsCl and CsBr.

Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts

  • Kim, Kyungho;Lee, Sungmin;Im, Chae-Nam;Kang, Seung-Ho;Cheong, Hae-Won;Han, Yoonsoo
    • 한국분말재료학회지
    • /
    • 제24권5호
    • /
    • pp.364-369
    • /
    • 2017
  • Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with $300{\mu}m$ thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.