DOI QR코드

DOI QR Code

Fabrication and Characterization of Thermal Battery using Porous MgO Separator Infiltrated with Li based Molten Salts

  • Kim, Kyungho (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sungmin (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Im, Chae-Nam (Agency for Defense Development) ;
  • Kang, Seung-Ho (Agency for Defense Development) ;
  • Cheong, Hae-Won (Agency for Defense Development) ;
  • Han, Yoonsoo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2017.10.15
  • Accepted : 2017.10.20
  • Published : 2017.10.28

Abstract

Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with $300{\mu}m$ thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.

Keywords

References

  1. R. A. Guidotti and P. Masset: J. Power Sources., 161 (2006) 1443. https://doi.org/10.1016/j.jpowsour.2006.06.013
  2. P. Masset and R. A. Guidotti: J. Power Sources., 164 (2007) 397. https://doi.org/10.1016/j.jpowsour.2006.10.080
  3. R. A. Guidotti and P. J. Masset: J. Power Sources., 183 (2008) 388. https://doi.org/10.1016/j.jpowsour.2008.04.090
  4. P. J. Masset and R. A. Guidotti: J. Power Sources., 177 (2008) 595. https://doi.org/10.1016/j.jpowsour.2007.11.017
  5. P. J. Masset and R. A. Guidotti: J. Power Sources., 178 (2008) 456. https://doi.org/10.1016/j.jpowsour.2007.11.073
  6. P. Butler, C. Wagner, R. Guidotti and I. Francis: J. Power Sources., 136 (2004) 240. https://doi.org/10.1016/j.jpowsour.2004.03.034
  7. H. W. Cheong, S. H. Ha and Y. S. Choi: Ceram. Process., 13 (2012) 308.
  8. Y. Choi, H. Yu, H. Cheong and Y. Lee: Appl. Chem. Eng., 25 (2014) 161. https://doi.org/10.14478/ace.2013.1123
  9. D. H. Doughty, P. C. Butler, R. G. Jungst and E. P. Roth: J. Power Sources., 110 (2002) 357. https://doi.org/10.1016/S0378-7753(02)00198-2
  10. S. Martin, K. Sridharan, T. Allen, M. Mohammadian and J. Sager: Int. Pyroprocess. Res. Conf., Fontana, WI (2012).
  11. V. Tomeckova, J.W. Halloran and L. Gauckler: J. Am. Ceram. Soc., 95 (2012) 3763. https://doi.org/10.1111/j.1551-2916.2012.05444.x
  12. L. Yuan: Ph. D. Investigation of anode materials for lithium- ion batteries, University of Wollongong, Australia (2006) 1954.
  13. W. Kim, S. Lee, R. Song and J. Lee: Trans. Korean hydrogen Renewable energy Soc., 24 (2013) 467. https://doi.org/10.7316/KHNES.2013.24.6.467
  14. F. Zhang, N. LaBarqe, W. Yang, J. Liu and B. Logan: Chem. Sus. Chem., 8 (2015) 1043. https://doi.org/10.1002/cssc.201403290
  15. K. Y. Cho, D. Riu, S. Huh, D. Shin, H. Kim, J. Choi and H. Cheong: J. Korean Ceram. Soc., 45 (2008) 423. https://doi.org/10.4191/KCERS.2008.45.7.423
  16. R. A. Guidotti, F. W. Reinhardt and E.V. Thomas: USA, SAND99-29070 (2000).
  17. R. A. Guidotti, F. W. Reinhardt and A. H. Andazola: SAND2002-1458 (2002).
  18. R. Hashaikeh and J. A. Szpunar: J. Phys., 165 (2009) 012008.
  19. E. L. Corral, A. Ayala, R. Loehman, R. Shah, M. Reiterer and D. Bencoe: SAND2008-0528 (2008).
  20. K. Prasanna and C. W. Lee: J. Solid State Electrochem., 17 (2013) 1377. https://doi.org/10.1007/s10008-013-2000-z
  21. D. Djian, F. Alloin, S. Martinet, H. Lignier and J. Sanchez: J. Power Sources., 172 (2007) 416. https://doi.org/10.1016/j.jpowsour.2007.07.018
  22. T. H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase and T. Sakai: J. Power Sources., 181 (2008) 155. https://doi.org/10.1016/j.jpowsour.2008.03.010
  23. S. Mei, J. Yang, X. Xu, S. Quaresma, S. Agathopoulos and J. Ferreir: J. Eur. Ceram. Soc., 26 (2006) 67. https://doi.org/10.1016/j.jeurceramsoc.2004.10.020
  24. L. A. Mondy, C. Roberts, A. Grillet, M. Soehnel, D. Barringer, C. Diantonio, T. Chavez, D. Ingersoll, L. Hughes, L. Evans and S. Fitchett: SAND2013-9787 (2013).
  25. Y. Yang, J. Loomis, H. Ghasemi and G. Chen.: Nano Lett., 14 (2014) 6578. https://doi.org/10.1021/nl5032106
  26. S. S. Zhang: J. Power Sources., 164 (2007) 351. https://doi.org/10.1016/j.jpowsour.2006.10.065
  27. X. M. Feng, X. P. Ai and H. X. Yang: Electrochem. Communications, 6 (2004) 1021. https://doi.org/10.1016/j.elecom.2004.07.021
  28. S. I. Oh: Bull. Korean Chem. Soc., 31 (2010) 3723. https://doi.org/10.5012/bkcs.2010.31.12.3723
  29. L.G. Ferguson and F. Dogan: J. Mater. Sci., 36 (2001) 137. https://doi.org/10.1023/A:1004845205322
  30. R. A. Guidotti and S. Preston: AIAA Pap., (2007).