DOI QR코드

DOI QR Code

Recovery of cesium ions from seawater using a porous silica-based ionic liquid impregnated adsorbent

  • Wu, Hao (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Kudo, Tatsuya (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Kim, Seong-Yun (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Miwa, Misako (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University) ;
  • Matsuyama, Shigeo (Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University)
  • Received : 2021.08.09
  • Accepted : 2021.10.18
  • Published : 2022.05.25

Abstract

A porous silica-based adsorbent was prepared by impregnating the pores of a silica support with the extractant 1,3-[(2,4-diethylheptylethoxy)oxy]-2,4-crown-6-calix[4]arene (Calix[4]arene-R14) and an additive agent 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C2mim + NTf-2) as the materials to remove cesium(I) (Cs+) ions from seawater. The as-prepared adsorbent showed excellent adsorption performance toward Cs+ ions, with adsorption equilibrium reached within 2 h and an adsorption amount of 0.196 mmol/g observed. The solution pH, temperature, and the presence of coexisting metal ions were found to have almost no effect on Cs+ adsorption. The adsorption mechanism was considered to proceed via ion exchange between Cs+ and C2mim+. In addition, the particle-induced X-ray emission analysis results further clarified that the adsorbed Cs+ ion species on the adsorbent was in the form of both CsCl and CsBr.

Keywords

References

  1. V. Veliscek-Carolan, Separation of actinides from spent nuclear fuel: a review, J. Hazard Mater. 318 (2016) 266-281, https://doi.org/10.1016/j.jhazmat.2016.07.027.
  2. K.A. Rogers, Fire in the hole: a review of national spent nuclear fuel disposal policy, Prog. Nucl. Energy 51 (2009) 281-289, https://doi.org/10.1016/j.pnucene.2008.09.004.
  3. A. Mishra, L.K. Singh, Review of nuclear fuel reprocessing, J. Crit. Rev. 7 (2020) 1352-1356, https://doi.org/10.31838/jcr.07.07.245.
  4. MdR. Awual, T. Yaita, T. Kobayashi, H. Shiwaku, S. Suzuki, Improving cesium removal to clean-up the contaminated water using modified conjugate material, J. Environ. Chem. Eng. 8 (2020), 103684, https://doi.org/10.1016/j.jece.2020.103684.
  5. S. Khandaker, M.F. Chowdhury, MdR. Awual, A. Islam, T. Kuba, Efficient cesium encapsulation from contaminated water by cellulosic biomass based activated wood charcoal, Chemosphere 262 (2021), 127801, https://doi.org/10.1016/j.chemosphere.2020.127801.
  6. MdN. hasan, M.A. Shenashen, MdM. Hasan, H. Znad, MdR. Awual, Assessing of cesium removal from wastewater using functionalized wood cellulosic adsorbent, Chemosphere 270 (2021), 128668, https://doi.org/10.1016/j.chemosphere.2020.128668.
  7. S. Khandaker, Y. Toyohara, G.C. Saha, MdR. Awual, T. Kuba, Development of synthetic zeolites from bio-slag for cesium adsorption: kinetic, isotherm and thermodynamic studies, J. Water Process Eng. 33 (2020), 101055, https://doi.org/10.1016/j.jwpe.2019.101055.
  8. MdR. Awual, Ring size dependent crown ether based mesoporous adsorbent for high cesium adsorption from wastewater, Chem. Eng. J. 303 (2016) 539-546, https://doi.org/10.1016/j.cej.2016.06.040.
  9. MdR. Awual, Y. Miyazaki, T. Taguchi, H. Shiwaku, T. Yaita, Encapsulation of cesium from contaminated water with highly selective facial organiceinorganic mesoporous hybrid adsorbent, Chem. Eng. J. 291 (2016) 128-137, https://doi.org/10.1016/j.cej.2016.01.109.
  10. H. Thielen, The Fukushima Daiichi nuclear Accident-An overview, Health Phys. 103 (2012) 169-174, https://doi.org/10.1097/HP.0b013e31825b57ec.
  11. M. Baba, Fukushima accident: what happened? Radiat. Meas. 55 (2013) 17-21, https://doi.org/10.1016/j.radmeas.2013.01.013.
  12. Y. Funabashi, K. kitazawa, Fukushima in review: A complex disaster, a disastrous Response, Bull. At. Sci. 68 (2) 9-21, http://doi.org/10.1177/0096340212440359.
  13. MdR. Awual, A novel facial composite adsorbent for enhanced copper(II) detection and removal from wastewater, Chem. Eng. J. 266 (2015) 368-375, https://doi.org/10.1016/j.cej.2014.12.094.
  14. H. Karimi-Maleh, M. Shafieizadeh, M.A. Taher, F. Opoku, E.M. Kiarii, P.P. Govender, S. Ranjbari, M. Rezapour, Y. Orooji, The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation, J. Mol. Liq. 298 (2020), 112040, https://doi.org/10.1016/j.molliq.2019.112040.
  15. MdR. Awual, MdM. Hasan, A ligand based innovative composite material for selective lead(II) capturing from wastewater, J. Mol. Liq. 294 (2019), 111679, https://doi.org/10.1016/j.molliq.2019.111679.
  16. Z. Chen, Y. Wu, Y.Z. Wei, Cesium removal from high level liquid waste utilizing a macroporous silica-based calix[4]arene-R14 adsorbent modified with surfactants, Energy Procedia 39 (2013) 319-327, https://doi.org/10.1016/j.egypro.2013.07.219.
  17. A.Y. Zhang, Y.Z. Wei, H. Hoshi, Y. Koma, M. Kamiya, Partitioning of cesium from a simulated high level liquid waste by extraction chromatography utilizing a macroporous silica-based supramolecular calix[4]arene-crown impregnated polymeric composite, solvent extr, Ion Exch 25 (2007) 389-405, https://doi.org/10.1080/07366290701285322.
  18. B.K. Tang, W.T. Bi, M.L. Tian, K.H. Row, Application of ionic liquid for extraction and separation of bioactive compounds from plants, J. Chromatogr. B 904 (2012) 1-21, https://doi.org/10.1016/j.jchromb.2012.07.020.
  19. G.T. Wei, Z.S. yang, C.J. Chen, Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions, Anal. Chim. Acta 488 (2003) 183-192, https://doi.org/10.1016/S0003-2670(03)00660-3.
  20. M.L. Dietz, Ionic liquids as extraction solvents: where do we stand? Separ. Sci. Technol. 41 (2006) 2047-2063, https://doi.org/10.1080/01496390600743144.
  21. A.N. Turanov, V.K. Karandashev, M. Boltoeva, Solvent extraction of intra-lanthanides using a mixture of TBP and TODGA in ionic liquid, Hydrometallurgy 195 (2020), 105367, https://doi.org/10.1016/j.hydromet.2020.105367.
  22. H.M. Luo, S. Dai, P.V. Bonnesen, A.C. Buchanan, J.D. Holbrey, N.J. Bridges, R.D. Rogers, Extraction of cesium ions from aqueous solutions using calix[4] arene-bis(tert-octylbenzo-crown-6) in ionic liquids, Anal. Chem. 76 (2004) 3078-3083, https://doi.org/10.1021/ac049949k.
  23. X.Q. Sun, H.M. Luo, S. Dai, Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle, Chem. Rev. 112 (2012) 2100-2128, https://doi.org/10.1021/cr200193x.
  24. Y. Wu, X.X. Zhang, S.Y. Kim, Y.Z. Wei, Simultaneous separation and recovery of Cs(I) and Sr(II) using a hybrid macrocyclic compounds loaded adsorbent. Kinetic, equilibrium and dynamic adsorption studies, J. Nucl. Sci. Technol. 53 (2016), https://doi.org/10.1080/00223131.2016.1175979, 1968-1977.
  25. Q. Yu, S.Y. Ning, W. Zhang, X.P. Wang, Y.Z. Wei, Recovery of scandium from sulfuric acid solution with a macro porous TRPO/SiO2-P adsorbent, Hydrometallurgy 181 (2018) 74-81, https://doi.org/10.1016/j.hydromet.2018.07.025.
  26. Q. Zou, Y. Wu, Q.D. Shu, S.Y. Ning, X.P. Wang, Y.Z. Wei, F.D. Tang, Separation of palladium along with minor actinides by isoBu-BTP/SiO2-P adsorbent from high-level liquid waste, J. Chem. Eng. Data 63 (2018) 2931-2939, https://doi.org/10.1021/acs.jced.8b00238.
  27. Y. Wu, X.X. Zhang, S.Y. Kim, Y.Z. Wei, Simultaneous separation and recovery of Cs(I) and Sr(II) using a hybrid macrocyclic compounds loaded adsorbent. Kinetic, equilibrium and dynamic adsorption studies, J. Nucl. Sci. Technol. 53 (2016), https://doi.org/10.1080/00223131.2016.1175979, 1968-1977.
  28. S. Toyama, S. Matsuyama, K. Ishii, A. Terakawa, K. Kasahara, D. Sata, S. Itoh, T. Tanimukai, J. Uegaki, T. Tada, Development of WDX-µ-PIXE system using a microbeam for chemical state analysis, CYRIC Annual Report 24 (2014) 111-120, https://doi.org/10.1142/S012908351440004X.
  29. MdR. Awual, S. Suzuki, T. Taguchi, H. Shiwaku, Y. Okamoto, T. Yaita, Radioactive cesium removal from nuclear wastewater by novel inorganic and conjugate adsorbents, Chem. Eng. J. 242 (2014) 127-135, https://doi.org/10.1016/j.cej.2013.12.072.
  30. MdR. Awual, T. Yaita, Y. Miyazaki, D. Matsumura, H. Shiwaku, T. Taguchi, A reliable hybrid adsorbent for efficient radioactive cesium accumulation from contaminated wastewater, Sci. Rep. 6 (2016) 1-10, https://doi.org/10.1038/srep19937.
  31. I. Hierro, Y. Perez, M. Fajardo, Supported choline hydroxide (ionic liquid) on mesoporous silica as heterogeneous catalyst for Knoevenagel condensation reactions, Microporous Mesoporous Mater. 263 (2018) 173-180, https://doi.org/10.1016/j.micromeso.2017.12.024.
  32. MdR. Awual, MdM. Hasand, J. Iqbal, MdA. Islam, A. Islam, S. Khandaker, A.M. Asiri, M.M. Rahman, J. Environ. Chem. Eng. 8 (2020), 103591, https://doi.org/10.1016/j.jece.2019.103591.
  33. Z.A. Alothman, A review: Fundamental Aspects of silicate mesoporous materials, Materials 5 (2012) 2874-2902, https://doi.org/10.3390/ma5122874.
  34. K.T. Kubra, MdS. Salman, MdN. Hasan, A. Islam, MdM. Hasan, MdR. Awual, Utilizing an alternative composite material for effective copper(II) ion capturing from wastewater, J. Mol. Liq. 336 (2021), 116325, https://doi.org/10.1016/j.molliq.2021.116325.
  35. MdR. Awual, MdM. Hasan, J. Iqbal, A. Islam, MdA. Islam, A.M. Asiri, M.M. Rahman, Naked-eye lead(II) capturing from contaminated water using innovative large-pore facial composite materials, Microchem. J. 154 (2020), 104585, https://doi.org/10.1016/j.microc.2019.104585.
  36. H. Luo, S. Dai, P.V. Bonnesen, T.J. Haverlock, B.A. Moyer, A.C. Buchanan III, A striking effect of ionic-liquid anions in the extraction of Sr2+ and Cs+ by Dicyclohexano-18-crown-6, solvent extr, Ion Exch 24 (2006) 19-31, https://doi.org/10.1080/07366290500388624.
  37. A.F. Tag El-Din, M.E. El-Khouly, E.A. Elshehy, A.A. Atia, W.A. El-Said, Cellulose acetate assisted synthesis of worm-shaped mesopores of MgP ion exchanger for cesium ions removal from seawater, Microporous Mesoporous Mater. 265 (2018) 211-218, https://doi.org/10.1016/j.micromeso.2018.02.014.
  38. Q.T.N. Le, K. Cho, Caesium adsorption on a zeolitic imidazolate framework (ZIF-8) functionalized by ferrocyanide, J. Colloid Interface Sci. 581 (2021) 741-750, https://doi.org/10.1016/j.jcis.2020.08.017.
  39. S. Eun, J. Ryu, H. Kim, H.J. Hong, S. Kim, Simultaneous removal of radioactive cesium and strontium from seawater using a highly efficient Prussian blue-embedded alginate aerogel, J. Environ. Manag. 297 (2021), 113389, https://doi.org/10.1016/j.jenvman.2021.113389.
  40. MdR. Awual, T. Yaita, T. Taguchi, H. Shiwaku, S. Suzuki, Y. okamoto, Selective cesium removal from radioactive liquid waste by crown ether immobilized new class conjugate adsorbent, J. Hazard Mater. 278 (2014) 227-235, https://doi.org/10.1016/j.jhazmat.2014.06.011.