• Title/Summary/Keyword: Porous microspheres

Search Result 38, Processing Time 0.022 seconds

Fabrication of Porous Alumina Ceramics Using Hollow Microspheres as the Pore-forming Agent

  • Nie, Zhengwei;Lin, Yuyi
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.4
    • /
    • pp.368-373
    • /
    • 2015
  • Porous alumina ceramics with two different pore sizes were fabricated using hollow microspheres as the pore-forming agent. The relative density, total porosity, and microstructure of the obtained alumina ceramics were studied. It was found that the total porosity of sintered samples with different amounts of hollow microsphere content, from 2.0 to 4.0 wt%, was 69.3-75.6%. The interconnected and spherical cell morphology was obtained with 3.0 wt% hollow microsphere content. The resulting ceramics consist of a hierarchical structure with large-sized cells, and small-sized pores in the cell walls. Moreover, the compressive strength of the sintered samples varied from 8.3-11.5 MPa, corresponding to hollow microsphere contents of 2.0-4.0 wt%.

Development of Specific Organ-Targeting Drug Delivery System (III)-In Vitro Study on Liver-Targeting Adriamycin Delivery System using Human Serum Albumin Microspheres- (장기표적용 약물수송체의 개발에 관한 연구(제 3보 -알부민 미립구를 이용한 Adriamycin의 간 표적용 수송체에 관한 in vitro 연구-)

  • Kim, Chong-Kook;Hwang, Sung-Joo;Yang, Ji-Sun
    • Journal of Pharmaceutical Investigation
    • /
    • v.19 no.4
    • /
    • pp.195-202
    • /
    • 1989
  • In attempt to improve the chemotherapeutic activity of adriamycin, adriamycin-entrapped HSA microspheres were prepared and investigated by the various in vitro experiments. The shape, surface characteristics and size distribution of HSA microspheres are observed by scanning electron microscopy. The in vitro drug release, albumin matrix degradation by protease of HSA microspheres were studied. The shape of HSA microspheres were spherical and the surface was smooth and compact. The size of HSA microspheres ranged from 0.4 to $2.5\;{\mu}m$ and have average diameters of 0.5 to $0.7\;{\mu}m$. The size distribution of HSA microspheres prepared by ultrasonication was mainly affected by albumin concentration and heating time in the process of hardening. In in vitro, almost all adriamycin was released from HSA microspheres for 8 hr. Analysis of the resulting adriamycin release profiles demonstrated that adriamycin is released from the microspheres in two distinct steps, a fast phase (until 30 min) followed by a much slower sustained release phase. Drug release, which is due to diffusion, was depended on the rate of matrix hydration. Drug release was largely affected by albumin concentration and heating temperature during the process of hardening. Albumin matrix degradation of HSA microspheres was affected by heating temperature and albumin concentration. Higher temperature and longer times generally produce harder, less porous, and slowly degradable microspheres.

  • PDF

Deactivation of Porous Photocatalytic Particles During a Wastewater Treatment Process

  • Cho, Young-Sang;Nam, Soyoung
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.185-197
    • /
    • 2019
  • Deactivation of porous photocatalytic materials was studied using three types of microstructured particles: macroporous titania particles, titania microspheres, and porous silica microspheres containing CNTs and $TiO_2$ nanoparticles. All particles were synthesized by emulsion-assisted self-assembly using micron-sized droplets as micro-reactors. During repeated cycles of the photocatalytic decomposition reaction, the non-dimensionalized initial rate constants (a) were estimated as a function of UV irradiation time (t) from experimental kinetics data, and the results were plotted for a regression according to the exponentially decaying equation, $a=a_0\;{\exp}(-k_dt)$. The retardation constant ($k_d$) was then compared for macroporous titania microparticles with different pore diameters to examine the effect of pore size on photocatalytic deactivation. Nonporous or larger macropores resulted in smaller values of the deactivation constant, indicating that the adsorption of organic materials during the photocatalytic decomposition reaction hinders the generation of active radicals from the titania surface. A similar approach was adopted to evaluate the activation constant of porous silica particles containing CNT and $TiO_2$ nanoparticles to compare the deactivation during recycling of the photocatalyst. As the amount of CNTs increased, the deactivation constant decreased, indicating that the conductive CNTs enhanced the generation of active radicals in the aqueous medium during photocatalytic oxidation.

A NOVEL ANTI-MICROBIAL COLLOIDAL SILVER SYSTEM AND ITS APPLICATION FOR COSMETICS

  • Kim, Jin-Woong;Kim, Su-Jin;Han, Sang-Hoon;Chang, Ih-Seop;Kang, Hak-Hee;Lee, Ok-Sub
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.686-697
    • /
    • 2003
  • A new colloidal silver (Ag) system is present in which a fine colloidal Ag is in situ deposited onto functionalized porous poly (ethylene glycol dimethacrylate) (poly (EGDMA)) microspheres. The effectiveness of Ag deposition was investigated considering the surface characteristics of poly (EGDMA) microspheres. The result reported in this study illustrates that the control of surface area and surface functionality (in this study, a hydroxyl group) of poly (EGDMA) microspheres is an important factor that determines practically the degree of deposition of colloidal Ag. The x-ray analysis showed that Ag nanoparticles were dispersed evenly inner and outer surfaces and had a face center cubic (fee) phase. In the preservative efficacy test, the Ag-containing poly (EGDMA) microspheres had a powerful anti-bacterial activity, showing a high potential for a new preservative in cosmetic industry.

  • PDF

Preparation and Evaluation of Chondroitin Sulfate/Gelatin Microspheres Containing Dexamethasone 21-Acetate (덱사메타손 21-아세테이트를 함유한 콘드로이틴 설페이트/젤라틴 마이크로스피어의 제조 및 평가)

  • Yong, Chul-Soon;Kim, Young-Ju;Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.4
    • /
    • pp.273-280
    • /
    • 1996
  • Chondroitin sulfate/gelatin microspheres containing dexamethasone 21-acetate were prepared by complex coacervation method and their release patterns were examined in vitro. Microspheres prepared with a small amount of crosslinking agent had smooth surface and few pores, but those with a large amount of crosslinking agent were more porous and less spherical. In vitro release patterns were varied by changing polymer/drug weight ratio and amount of crosslinking agent. The release rate of dexamethasone 21-acetate in the presence of collagenase was faster than that in the absence of collagenase. Anti-inflammatory effect of dexamethasone 21-acetate microspheres was more efficient than that of dexamethasone 21-acetate solution in carrageenan-induced arthritis in the rat. On the basis of the above results, we might expect the degradation and drug release rate of these microspheres to be regulated by the degree of crosslinking and the level of enzymes. In patients with severe rheumatoid arthritis who have high concentration of collagenase, more drug would be released from the microspheres. An intra-articular injection therapy of rheumatoid arthritis with desired release kinetics could be developed to enhance patient compliance and therapeutic index.

  • PDF

Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity

  • Li, Lingwei;Xue, Shaolin;Xie, Pei;Feng, Hange;Hou, Xin;Liu, Zhiyuan;Xu, Zhuoting;Zou, Rujia
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.739-748
    • /
    • 2018
  • ZnS nanowalls, microspheres and rice-shaped nanoparticles have been successfully grown on graphene oxide (GO) sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized GO/ZnS have been characterized by X-ray power diffraction, energy dispersive spectrometer, scanning electron microscope, Raman spectra, photoluminescence spectroscopy and ultraviolet-visible absorption spectroscopy. It was found that the concentration of CTAB and the reaction temperature were important in the formation of GO/ZnS microstructures. The photocatalytic activity of the as-synthesized GO/ZnS was investigated through the photocatalytic degradation of textile dyeing waste. Results showed that the catalytic activity of the GO/ZnS porous spheres to methyl orange and methylene blue is higher than those of other samples. The degradation rates of methyl orange and methylene blue by porous spheres in 50 min were 97.6 and 97.1%, respectively. This is mainly attributed to the large specific surface area of GO/ZnS porous spheres and high separation efficiency between photogenerated electron and hole pairs.

Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions

  • Cho, Young-Sang;Kim, Tae-Yeol;Yi, Gi-Ra;Kim, Young-Kuk;Choi, Chul-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.159-166
    • /
    • 2012
  • We have introduced the Pickering emulsion systems to generate novel confining geometries for the selforganization of monodisperse polymer microspheres using nanoparticle-stabilized emulsion droplets encapsulating the building block particles. Then, through the slow evaporation of emulsion phases by heating, these microspheres were packed into regular polyhedral colloidal clusters covered with nanoparticle-stabilizers made of silica. Furthermore, polymer composite colloidal clusters were burnt out leaving nonspherical hollow micro-particles, in which the configurations of the cluster structure were preserved during calcination. The selfassembled porous architectures in this study will be potentially useful in various applications such as novel building block particles or supporting materials for catalysis or gas adsorption.

Preparation of Porous PMMA/TiO2 Microspheres by Spray Drying Process (스프레이 건조법을 이용한 PMMA/TiO2 다공성 입자 제조 및 특성 연구)

  • Paik, Dong-Hyun;Lee, Hyunsuk;Gang, Rae-Hyoung;Kim, Yong-Jin;Lee, John Hwan;Choi, Sung-Wook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.42 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Highly porous polymethyl methacrylate (PMMA) microspheres impregnated by $TiO_2$ powder were prepared by spray drying method. The particle size and the porosity were controlled by optimizing the co-solvent ratio and the polymer concentration. $TiO_2$ powder was impregnated into the microspheres upto 74.6 wt% content based on the weight of the resultant $PMMA/TiO_2$ microspheres. SEM images showed that $TiO_2$ powder was well distributed throughout the inside of the microsphere. EDX mapping showed that the Ti signal was well detected from every part of the microspheres, which was the evidence of the formation of the $PMMA/TiO_2$ composite. Hg porosimetry result showed that the porosity was found to be over 50% regardless of the $TiO_2$ contents. The final product was found to have high oil-absorbing capacity and great hiding power, both of which are key properties in designing the microsphere materials for make-up cosmetics application.

Low Temperature Processing of Porous Silicon Carbide Ceramics by Carbothermal Reduction (탄소열환원 공정을 사용한 다공질 탄화규소 세라믹스의 저온 제조공정)

  • Eom, Jung-Hye;Jang, Doo-Hee;Kim, Young-Wook;Song, In-Hyuck;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.552-557
    • /
    • 2006
  • A low temperature processing route for fabricating porous SiC ceramics by carbothermal reduction has been demonstrated. Effects of expandable microsphere content, sintering temperature, filler content, and carbon source on microstructure, porosity, compressive strength, cell size, and cell density were investigated in the processing of porous silicon carbide ceramics using expandable microspheres as a pore former. A higher microsphere content led to a higher porosity and a higher cell density. A higher sintering temperature resulted in a decreased porosity because of an enhanced densification. The addition of inert filler increased the porosity, but decreased the cell density. The compressive strength of the porous ceramics decreased with increasing the porosity. Typical compressive strength of porous SiC ceramics with ${\sim}70%$ porosity was ${\sim}13 MPa$.