Acknowledgement
Supported by : Natural Science Foundation of China
References
- Geim, A.K., Novoselov, K.S. : The rise of graphene. Nat. Mater. 6, 183-191 (2007) https://doi.org/10.1038/nmat1849
- Mahdiani, M., Sobhani, A., Salavati-Niasari, M. : Enhancement of magnetic, electrochemical and photocatalytic properties of lead hexaferrites with coating graphene and CNT: Sol-gel auto-combustion synthesis by valine. Sep. Purif. Technol. 185, 140-148 (2017) https://doi.org/10.1016/j.seppur.2017.05.029
- Fu, X., Bei, F., Wang, X., Brien, S.O., Lombardi, J.R. : Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives. Nanoscale 2, 1461-1466 (2010) https://doi.org/10.1039/c0nr00135j
- Song, H.S., Yang, C., Liu, D.B. : Dielectric properties of graphene/epoxy composites. J. Funct. Mater. 43, 1185-1188 (2012)
- Zhou, W.K., Xue, S.L., Han, J.W., Xie, P. : Synthesis of grass-like ZnSe nanostructures on graphene oxide and their excellent field eminssion properties. Mater. Lett. 134, 256-258 (2014) https://doi.org/10.1016/j.matlet.2014.07.101
- Ho, C.H. : Enhanced photoelectric-conversion yield in niobium incorporated In2S3 with intermediate band. J. Mater. Chem. 218, 10518-10524 (2011)
- Fang, X.S., Zhai, T.Y., Gautam, U.K., Li, L., Wu, L.M., Bando, Y., Golberg, D. : ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175-287 (2011) https://doi.org/10.1016/j.pmatsci.2010.10.001
- Jia, W.N., Wu, X., Jia, B.X., Qu, F.Y., Fan, H.J. : Self-Assembled porous ZnS nanospheres with high photocatalytic performance. Sci. Adv. Mater. 5, 1329-1336 (2013) https://doi.org/10.1166/sam.2013.1593
- Jia, W., Jia, B., Wu, X., Qu, F.Y. : Self-assembly of shape-controlled ZnS nanostructures with novel yellow light photoluminescence and excellent hydrophobic properties. Cryst. Eng. Comm. 14, 7759-7763 (2012) https://doi.org/10.1039/c2ce25144b
- Fang, X.S., Bando, Y., Liao, M.Y., Zhai, T.Y., Gautam, U.K., Li, L., Koide, Y., Golberg, D. : An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Func. Mater. 20, 500-508 (2010) https://doi.org/10.1002/adfm.200901878
- Liang, Y., Xu, H.Y., Hark, S.K. : Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J. Phys. Chem. C 114, 8343-8347 (2010) https://doi.org/10.1021/jp102167d
- Pal, B., Pal, B. : Tuning the optical and photocatalytic properties of anisotropic ZnS nanostructures for the selective reduction of nitroaromatics. Chem. Eng. J. 263, 200-208 (2015) https://doi.org/10.1016/j.cej.2014.10.109
- Kavanagh, Y., Alam, M.J., Cameron, D.C. : The characteristics of thin film electroluminescent displays produced using sol-gel produced tantalum pentoxide and Zinc Sulfide. Thin Solid Films 447-448, 85-89 (2004) https://doi.org/10.1016/j.tsf.2003.09.027
-
Jia, B., Jia, W., Qu, F., Wu, X. : General strategy for self-assembly of mesoporous
$SnO_2$ nanospheres and their applications in water purification. RSC Adv. 3, 2140-12148 (2013) -
Liu, Y., Jiao, Y., Zhang, Z.L., Qu, F.Y., Umar, A., Wu, X. : Hierarchical
$SnO_2$ nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl. Mater. Interfaces. 6, 2174-2184 (2014) https://doi.org/10.1021/am405301v -
Jiao, Y., Liu, Y., Yin, B., Zhang, S., Qu, F., Wu, X. : Hybrid
${\alpha}$ -$Fe_2O_3$ @NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy 10, 90-98 (2014) https://doi.org/10.1016/j.nanoen.2014.09.002 - Calandra, P., Longo, A., Liveri, V.T. : Synthesis of ultra-small ZnS nanoparticles by solid-solid reaction in the confined space of AOT reversed micelles. J. Phys. Chem. B 107, 25-30 (2003)
- Biswas, S., Kar, S. : Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19, 045710 (2008) https://doi.org/10.1088/0957-4484/19/04/045710
-
Salavati-Niasari, M., Davar, F., Loghman-Estarki, M.R. : Controllable synthesis of thioglycolic acid capped
$ZnS(Pn)_{0.5}$ nanotubes via simple aqueous solution route at low temperatrures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor. J. Alloys Compd. 494, 199-204 (2010) https://doi.org/10.1016/j.jallcom.2009.10.265 - Salavati-Niasari, M., Davar, F., Seyghalkar, H., Esmaeili, E., Mir, N. : Novel inorganic precursor in the controlled synthesis of zinc blend ZnS nanoparticles via TGA-assisted hydrothermal method. Cryst. Eng. Comm. 13, 2948-2954 (2011) https://doi.org/10.1039/c0ce00343c
- Salavati-Niasari, M., Davar, F., Mazaheri, M. : Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis (salicylidene) zinc (II)]. J. Alloys Compd. 470, 502-506 (2009) https://doi.org/10.1016/j.jallcom.2008.03.048
-
She, Y.Y., Yang, J., Qiu, K.Q. : Synthesis of ZnS nanoparticles by solid-liquid chemical reaction with ZnO and
$Na_2S$ under ultrasonic. Trans. Nonferrous Metals Soc. China 20, 211-215 (2010) https://doi.org/10.1016/S1003-6326(10)60041-6 - Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C. : Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Func. Mater. 15, 63-68 (2005) https://doi.org/10.1002/adfm.200305008
- Park, S., Jin, C., Kim, H., Hong, C., Lee, C. : Enhanced violet emission from ZnS nanowires annealed in an oxygen atmosphere. J. Lumin. 132, 231-235 (2012) https://doi.org/10.1016/j.jlumin.2011.08.029
- Fang, X.S., Bando, Y.S., Ye, C.H., Shen, G.Z., Golberg, D. : Shape-and size-controlled growth of ZnS nanostructures. J. Phys. Chem. C 111, 8469-8474 (2007) https://doi.org/10.1021/jp071556c
- Ma, Y.R., Qin, L.M., Ma, J., Cheng, H. : Facile synthesis of hollow ZnS nanospheres in block copolymer solutions. Langmuir 19, 4040-4042 (2003) https://doi.org/10.1021/la026997w
- Bi, C., Pan, L.Q., Guo, Z.G., Zhao, Y.L., Huang, M.F., Ju, X., Xiao, J.Q. : Facile fabrication of wurtzite ZnS hollow nanospheres using polystyrene spheres as templates. Mater. Lett. 64, 1681-1683 (2010) https://doi.org/10.1016/j.matlet.2010.05.006
- Chen, X.J., Xu, H.F., Xu, N.S., Zhao, F.H., Lin, W.J., Lin, G., Fu, Y.L., Huang, Z.L., Wang, H.Z., Wu, M.M. : Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. Inorg. Chem. 42, 3100-3106 (2003) https://doi.org/10.1021/ic025848y
- Fang, X.S., Wu, L.M., Hu, L.F. : ZnS nanostructure arrays: a developing material star. Adv. Mater. 23, 585-598 (2011) https://doi.org/10.1002/adma.201003624
- Fang, X.S., Bando, Y., Ye, C.H., Golberg, D. : Crystal orientationordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chem. Commun. 29, 3048-3050 (2007)
- Yin, L.W., Bando, Y., Zhan, J.H., Li, M.S., Golberg, D. : Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv. Mater. 17, 1972-1977 (2005) https://doi.org/10.1002/adma.200401839
- Shao, H.F., Qian, X.F., Huang, B.C. : Fabrication of single-crystal ZnO nanorods and ZnS nanotubes through a simple ultrasonic chemical solution method. Mater. Lett. 61, 3639-3643 (2007) https://doi.org/10.1016/j.matlet.2006.12.005
- Guo, C.F., Zhang, J., Wang, M., Tian, Y., Liu, Q. : A strategy to prepare wafer scale bismuth compound superstructures. Small 9, 2394-2398 (2013) https://doi.org/10.1002/smll.201300777
- Guo, C.F., Lan, Y.C., Sun, T.Y., Ren, Z.F. : Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes. Nano Energy 8, 110-117 (2014) https://doi.org/10.1016/j.nanoen.2014.05.011
- Zou, R.J., He, G.J., Xu, K.B., Liu, Q., Zhang, Z.Y., Hu, J.Q. : ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A 1, 8445-8452 (2013) https://doi.org/10.1039/c3ta11490b
- Sobhani, A., Salavati-Niasari, M. : Cobalt selenide nanostructures: hydrothermal synthesis, considering the magnetic property and effect of the different synthesis conditions. J. Mol. Liq. 219, 1089-1094 (2016) https://doi.org/10.1016/j.molliq.2016.03.062
-
Sobhani, A., Salavati-Niasari, M. : Morphological control of
$MnSe_2/Se$ nanocomposites by amount of hydrazine through a hydrothermal process. Mater. Res. Bull. 48, 3204-3210 (2013) https://doi.org/10.1016/j.materresbull.2013.04.086 - Gadzuk, J.W., Plummer, E.W. : Field emission energy distribution. Rev. Mod. Phys. 45, 487-548 (1973) https://doi.org/10.1103/RevModPhys.45.487
- Sobhani, A., Salavati-Niasari, M. : Single-source molecular precursor for synthesis of CdS nanoparticles and nanoflowers. High Temp. Mater. Processes 31, 157-162 (2012)
- Sobhani, A., Salavati-Niasari, M. : Hydrothermal synthesis of CoSe nanostructures without using surfactant. J. Mol. Liq. 220, 334-338 (2016) https://doi.org/10.1016/j.molliq.2016.04.099
- Sobhani, A., Salavati-Niasari, M. : Chromium selenide nanoparticles: hydrothermal synthesis in the presence of a new selenium source. J. Nanostruct 7, 141-146 (2017)
- Song, P., Zhang, X.Y., Sun, M.X., Cui, X.L., Lin, Y.H. : Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide. RSC Adv. 2, 1168-1173 (2012) https://doi.org/10.1039/C1RA00934F
- Geng, J., Liu, B., Xu, L., Hu, F.N., Zhu, J.J. : Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties. Langmuir 23, 10286-10293 (2007) https://doi.org/10.1021/la701299w
- Sobhani, A., Salavati-Niasari, M. : Optimized synthesis of ZnSe nanocrystals by hydrothermal method. J. Mater. Sci. : Mater. Electron. 27, 293-303 (2016) https://doi.org/10.1007/s10854-015-3753-1
-
Srivastava, M., Uddin, M.E., Singh, J., Kim, N.H., Lee, J.H. : Preparation and characterization of self-assembled layer by
$NiCo_2O_4$ -reduced graphene oxide nanocomposite with improved elecatalytic properties. J. Alloys. Compd. 590, 266-276 (2014) https://doi.org/10.1016/j.jallcom.2013.12.111 - Sobhani, A., Salavati-Niasari, M. : CdSe nanoparticles: facile hydrothermal synthesis, characterization and optical properties. J. Mater. Sci. : Mater. Electron. 26, 6831-6836 (2015) https://doi.org/10.1007/s10854-015-3297-4
- Panda, S.K., Datta, A., Chaudhuri, S. : Nearly monodispersed ZnS nanospheres: synthesis and optical properties. Chem. Phys. Lett. 440, 235-238 (2007) https://doi.org/10.1016/j.cplett.2007.03.063
- Yan, Q., Wu, A.P., Yan, H.J., Dong, Y.Y., Tian, C.G., Jiang, B.J., Fu, H.G. : Gelatin-assisted synthesis of ZnS hollow nanospheres: the microstructure tuning, formation mechanism and application for Pt-free photocatalytic hydrogen production. Cryst. Eng. Comm. 19, 461 (2017) https://doi.org/10.1039/C6CE02127A
- Watanabe, T., Takizawa, T., Honda, K. : Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide. J. Phys. Chem. 81, 1845-1851 (1977) https://doi.org/10.1021/j100534a012
-
Qin, Y.L., Sun, Z., Zhao, W.W., Liu, Z.Y., Ni, D.R., Ma, Z.Y. : Effect of
$S^{2-}$ donors on synthesizing and photocatalytic degrading properties of ZnS/RGO nanocomposite. Appl. Phys. A 123, 355 (2017) https://doi.org/10.1007/s00339-017-0972-8 - An, X.Q., Yu, J.C. : Graphene-based photocatalytic composites. RSC Adv. 1, 1426-1434 (2011) https://doi.org/10.1039/c1ra00382h
- Zhang, H., Lv, X.J., Li, Y.M., Wang, Y., Li, J.H. : P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380-386 (2010) https://doi.org/10.1021/nn901221k
-
Lee, J.S., You, K.H., Park, C.B. : Highly photoactive, low bandgap
$TiO_2$ nanoparticles wrapped by graphene. Adv. Mater. 24, 1084-1088 (2012) https://doi.org/10.1002/adma.201104110
Cited by
- Core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes vol.30, pp.5, 2018, https://doi.org/10.1007/s10854-019-00828-w
- Synthesis, physicochemical properties and antibacterial activity of hybrid nanocomposite of ZnS nanoparticles- decorated GO@CS vol.95, pp.9, 2018, https://doi.org/10.1088/1402-4896/abaad4