DOI QR코드

DOI QR Code

Facile Synthesis and Characterization of GO/ZnS Nanocomposite with Highly Efficient Photocatalytic Activity

  • Li, Lingwei (College of Science, Donghua University) ;
  • Xue, Shaolin (College of Science, Donghua University) ;
  • Xie, Pei (College of Science, Donghua University) ;
  • Feng, Hange (College of Science, Donghua University) ;
  • Hou, Xin (College of Science, Donghua University) ;
  • Liu, Zhiyuan (College of Science, Donghua University) ;
  • Xu, Zhuoting (College of Science, Donghua University) ;
  • Zou, Rujia (College of Science, Donghua University)
  • Received : 2018.03.20
  • Accepted : 2018.06.22
  • Published : 2018.11.10

Abstract

ZnS nanowalls, microspheres and rice-shaped nanoparticles have been successfully grown on graphene oxide (GO) sheets by the hydrothermal method. The morphologies, structures, chemical compositions and optical properties of the as-synthesized GO/ZnS have been characterized by X-ray power diffraction, energy dispersive spectrometer, scanning electron microscope, Raman spectra, photoluminescence spectroscopy and ultraviolet-visible absorption spectroscopy. It was found that the concentration of CTAB and the reaction temperature were important in the formation of GO/ZnS microstructures. The photocatalytic activity of the as-synthesized GO/ZnS was investigated through the photocatalytic degradation of textile dyeing waste. Results showed that the catalytic activity of the GO/ZnS porous spheres to methyl orange and methylene blue is higher than those of other samples. The degradation rates of methyl orange and methylene blue by porous spheres in 50 min were 97.6 and 97.1%, respectively. This is mainly attributed to the large specific surface area of GO/ZnS porous spheres and high separation efficiency between photogenerated electron and hole pairs.

Keywords

Acknowledgement

Supported by : Natural Science Foundation of China

References

  1. Geim, A.K., Novoselov, K.S. : The rise of graphene. Nat. Mater. 6, 183-191 (2007) https://doi.org/10.1038/nmat1849
  2. Mahdiani, M., Sobhani, A., Salavati-Niasari, M. : Enhancement of magnetic, electrochemical and photocatalytic properties of lead hexaferrites with coating graphene and CNT: Sol-gel auto-combustion synthesis by valine. Sep. Purif. Technol. 185, 140-148 (2017) https://doi.org/10.1016/j.seppur.2017.05.029
  3. Fu, X., Bei, F., Wang, X., Brien, S.O., Lombardi, J.R. : Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives. Nanoscale 2, 1461-1466 (2010) https://doi.org/10.1039/c0nr00135j
  4. Song, H.S., Yang, C., Liu, D.B. : Dielectric properties of graphene/epoxy composites. J. Funct. Mater. 43, 1185-1188 (2012)
  5. Zhou, W.K., Xue, S.L., Han, J.W., Xie, P. : Synthesis of grass-like ZnSe nanostructures on graphene oxide and their excellent field eminssion properties. Mater. Lett. 134, 256-258 (2014) https://doi.org/10.1016/j.matlet.2014.07.101
  6. Ho, C.H. : Enhanced photoelectric-conversion yield in niobium incorporated In2S3 with intermediate band. J. Mater. Chem. 218, 10518-10524 (2011)
  7. Fang, X.S., Zhai, T.Y., Gautam, U.K., Li, L., Wu, L.M., Bando, Y., Golberg, D. : ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175-287 (2011) https://doi.org/10.1016/j.pmatsci.2010.10.001
  8. Jia, W.N., Wu, X., Jia, B.X., Qu, F.Y., Fan, H.J. : Self-Assembled porous ZnS nanospheres with high photocatalytic performance. Sci. Adv. Mater. 5, 1329-1336 (2013) https://doi.org/10.1166/sam.2013.1593
  9. Jia, W., Jia, B., Wu, X., Qu, F.Y. : Self-assembly of shape-controlled ZnS nanostructures with novel yellow light photoluminescence and excellent hydrophobic properties. Cryst. Eng. Comm. 14, 7759-7763 (2012) https://doi.org/10.1039/c2ce25144b
  10. Fang, X.S., Bando, Y., Liao, M.Y., Zhai, T.Y., Gautam, U.K., Li, L., Koide, Y., Golberg, D. : An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Func. Mater. 20, 500-508 (2010) https://doi.org/10.1002/adfm.200901878
  11. Liang, Y., Xu, H.Y., Hark, S.K. : Orientation and structure controllable epitaxial growth of ZnS nanowire arrays on GaAs substrates. J. Phys. Chem. C 114, 8343-8347 (2010) https://doi.org/10.1021/jp102167d
  12. Pal, B., Pal, B. : Tuning the optical and photocatalytic properties of anisotropic ZnS nanostructures for the selective reduction of nitroaromatics. Chem. Eng. J. 263, 200-208 (2015) https://doi.org/10.1016/j.cej.2014.10.109
  13. Kavanagh, Y., Alam, M.J., Cameron, D.C. : The characteristics of thin film electroluminescent displays produced using sol-gel produced tantalum pentoxide and Zinc Sulfide. Thin Solid Films 447-448, 85-89 (2004) https://doi.org/10.1016/j.tsf.2003.09.027
  14. Jia, B., Jia, W., Qu, F., Wu, X. : General strategy for self-assembly of mesoporous $SnO_2$ nanospheres and their applications in water purification. RSC Adv. 3, 2140-12148 (2013)
  15. Liu, Y., Jiao, Y., Zhang, Z.L., Qu, F.Y., Umar, A., Wu, X. : Hierarchical $SnO_2$ nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor and supercapacitor applications. ACS Appl. Mater. Interfaces. 6, 2174-2184 (2014) https://doi.org/10.1021/am405301v
  16. Jiao, Y., Liu, Y., Yin, B., Zhang, S., Qu, F., Wu, X. : Hybrid ${\alpha}$-$Fe_2O_3$ @NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy 10, 90-98 (2014) https://doi.org/10.1016/j.nanoen.2014.09.002
  17. Calandra, P., Longo, A., Liveri, V.T. : Synthesis of ultra-small ZnS nanoparticles by solid-solid reaction in the confined space of AOT reversed micelles. J. Phys. Chem. B 107, 25-30 (2003)
  18. Biswas, S., Kar, S. : Fabrication of ZnS nanoparticles and nanorods with cubic and hexagonal crystal structures: a simple solvothermal approach. Nanotechnology 19, 045710 (2008) https://doi.org/10.1088/0957-4484/19/04/045710
  19. Salavati-Niasari, M., Davar, F., Loghman-Estarki, M.R. : Controllable synthesis of thioglycolic acid capped $ZnS(Pn)_{0.5}$ nanotubes via simple aqueous solution route at low temperatrures and conversion to wurtzite ZnS nanorods via thermal decompose of precursor. J. Alloys Compd. 494, 199-204 (2010) https://doi.org/10.1016/j.jallcom.2009.10.265
  20. Salavati-Niasari, M., Davar, F., Seyghalkar, H., Esmaeili, E., Mir, N. : Novel inorganic precursor in the controlled synthesis of zinc blend ZnS nanoparticles via TGA-assisted hydrothermal method. Cryst. Eng. Comm. 13, 2948-2954 (2011) https://doi.org/10.1039/c0ce00343c
  21. Salavati-Niasari, M., Davar, F., Mazaheri, M. : Synthesis and characterization of ZnS nanoclusters via hydrothermal processing from [bis (salicylidene) zinc (II)]. J. Alloys Compd. 470, 502-506 (2009) https://doi.org/10.1016/j.jallcom.2008.03.048
  22. She, Y.Y., Yang, J., Qiu, K.Q. : Synthesis of ZnS nanoparticles by solid-liquid chemical reaction with ZnO and $Na_2S$ under ultrasonic. Trans. Nonferrous Metals Soc. China 20, 211-215 (2010) https://doi.org/10.1016/S1003-6326(10)60041-6
  23. Fang, X.S., Ye, C.H., Zhang, L.D., Wang, Y.H., Wu, Y.C. : Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Func. Mater. 15, 63-68 (2005) https://doi.org/10.1002/adfm.200305008
  24. Park, S., Jin, C., Kim, H., Hong, C., Lee, C. : Enhanced violet emission from ZnS nanowires annealed in an oxygen atmosphere. J. Lumin. 132, 231-235 (2012) https://doi.org/10.1016/j.jlumin.2011.08.029
  25. Fang, X.S., Bando, Y.S., Ye, C.H., Shen, G.Z., Golberg, D. : Shape-and size-controlled growth of ZnS nanostructures. J. Phys. Chem. C 111, 8469-8474 (2007) https://doi.org/10.1021/jp071556c
  26. Ma, Y.R., Qin, L.M., Ma, J., Cheng, H. : Facile synthesis of hollow ZnS nanospheres in block copolymer solutions. Langmuir 19, 4040-4042 (2003) https://doi.org/10.1021/la026997w
  27. Bi, C., Pan, L.Q., Guo, Z.G., Zhao, Y.L., Huang, M.F., Ju, X., Xiao, J.Q. : Facile fabrication of wurtzite ZnS hollow nanospheres using polystyrene spheres as templates. Mater. Lett. 64, 1681-1683 (2010) https://doi.org/10.1016/j.matlet.2010.05.006
  28. Chen, X.J., Xu, H.F., Xu, N.S., Zhao, F.H., Lin, W.J., Lin, G., Fu, Y.L., Huang, Z.L., Wang, H.Z., Wu, M.M. : Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network. Inorg. Chem. 42, 3100-3106 (2003) https://doi.org/10.1021/ic025848y
  29. Fang, X.S., Wu, L.M., Hu, L.F. : ZnS nanostructure arrays: a developing material star. Adv. Mater. 23, 585-598 (2011) https://doi.org/10.1002/adma.201003624
  30. Fang, X.S., Bando, Y., Ye, C.H., Golberg, D. : Crystal orientationordered ZnS nanobelt quasi-arrays and their enhanced field-emission. Chem. Commun. 29, 3048-3050 (2007)
  31. Yin, L.W., Bando, Y., Zhan, J.H., Li, M.S., Golberg, D. : Self-assembled highly faceted wurtzite-type ZnS single-crystalline nanotubes with hexagonal cross-sections. Adv. Mater. 17, 1972-1977 (2005) https://doi.org/10.1002/adma.200401839
  32. Shao, H.F., Qian, X.F., Huang, B.C. : Fabrication of single-crystal ZnO nanorods and ZnS nanotubes through a simple ultrasonic chemical solution method. Mater. Lett. 61, 3639-3643 (2007) https://doi.org/10.1016/j.matlet.2006.12.005
  33. Guo, C.F., Zhang, J., Wang, M., Tian, Y., Liu, Q. : A strategy to prepare wafer scale bismuth compound superstructures. Small 9, 2394-2398 (2013) https://doi.org/10.1002/smll.201300777
  34. Guo, C.F., Lan, Y.C., Sun, T.Y., Ren, Z.F. : Deformation-induced cold-welding for self-healing of super-durable flexible transparent electrodes. Nano Energy 8, 110-117 (2014) https://doi.org/10.1016/j.nanoen.2014.05.011
  35. Zou, R.J., He, G.J., Xu, K.B., Liu, Q., Zhang, Z.Y., Hu, J.Q. : ZnO nanorods on reduced graphene sheets with excellent field emission, gas sensor and photocatalytic properties. J. Mater. Chem. A 1, 8445-8452 (2013) https://doi.org/10.1039/c3ta11490b
  36. Sobhani, A., Salavati-Niasari, M. : Cobalt selenide nanostructures: hydrothermal synthesis, considering the magnetic property and effect of the different synthesis conditions. J. Mol. Liq. 219, 1089-1094 (2016) https://doi.org/10.1016/j.molliq.2016.03.062
  37. Sobhani, A., Salavati-Niasari, M. : Morphological control of $MnSe_2/Se$ nanocomposites by amount of hydrazine through a hydrothermal process. Mater. Res. Bull. 48, 3204-3210 (2013) https://doi.org/10.1016/j.materresbull.2013.04.086
  38. Gadzuk, J.W., Plummer, E.W. : Field emission energy distribution. Rev. Mod. Phys. 45, 487-548 (1973) https://doi.org/10.1103/RevModPhys.45.487
  39. Sobhani, A., Salavati-Niasari, M. : Single-source molecular precursor for synthesis of CdS nanoparticles and nanoflowers. High Temp. Mater. Processes 31, 157-162 (2012)
  40. Sobhani, A., Salavati-Niasari, M. : Hydrothermal synthesis of CoSe nanostructures without using surfactant. J. Mol. Liq. 220, 334-338 (2016) https://doi.org/10.1016/j.molliq.2016.04.099
  41. Sobhani, A., Salavati-Niasari, M. : Chromium selenide nanoparticles: hydrothermal synthesis in the presence of a new selenium source. J. Nanostruct 7, 141-146 (2017)
  42. Song, P., Zhang, X.Y., Sun, M.X., Cui, X.L., Lin, Y.H. : Synthesis of graphene nanosheets via oxalic acid-induced chemical reduction of exfoliated graphite oxide. RSC Adv. 2, 1168-1173 (2012) https://doi.org/10.1039/C1RA00934F
  43. Geng, J., Liu, B., Xu, L., Hu, F.N., Zhu, J.J. : Facile route to Zn-based II-VI semiconductor spheres, hollow spheres, and core/shell nanocrystals and their optical properties. Langmuir 23, 10286-10293 (2007) https://doi.org/10.1021/la701299w
  44. Sobhani, A., Salavati-Niasari, M. : Optimized synthesis of ZnSe nanocrystals by hydrothermal method. J. Mater. Sci. : Mater. Electron. 27, 293-303 (2016) https://doi.org/10.1007/s10854-015-3753-1
  45. Srivastava, M., Uddin, M.E., Singh, J., Kim, N.H., Lee, J.H. : Preparation and characterization of self-assembled layer by $NiCo_2O_4$-reduced graphene oxide nanocomposite with improved elecatalytic properties. J. Alloys. Compd. 590, 266-276 (2014) https://doi.org/10.1016/j.jallcom.2013.12.111
  46. Sobhani, A., Salavati-Niasari, M. : CdSe nanoparticles: facile hydrothermal synthesis, characterization and optical properties. J. Mater. Sci. : Mater. Electron. 26, 6831-6836 (2015) https://doi.org/10.1007/s10854-015-3297-4
  47. Panda, S.K., Datta, A., Chaudhuri, S. : Nearly monodispersed ZnS nanospheres: synthesis and optical properties. Chem. Phys. Lett. 440, 235-238 (2007) https://doi.org/10.1016/j.cplett.2007.03.063
  48. Yan, Q., Wu, A.P., Yan, H.J., Dong, Y.Y., Tian, C.G., Jiang, B.J., Fu, H.G. : Gelatin-assisted synthesis of ZnS hollow nanospheres: the microstructure tuning, formation mechanism and application for Pt-free photocatalytic hydrogen production. Cryst. Eng. Comm. 19, 461 (2017) https://doi.org/10.1039/C6CE02127A
  49. Watanabe, T., Takizawa, T., Honda, K. : Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide. J. Phys. Chem. 81, 1845-1851 (1977) https://doi.org/10.1021/j100534a012
  50. Qin, Y.L., Sun, Z., Zhao, W.W., Liu, Z.Y., Ni, D.R., Ma, Z.Y. : Effect of $S^{2-}$ donors on synthesizing and photocatalytic degrading properties of ZnS/RGO nanocomposite. Appl. Phys. A 123, 355 (2017) https://doi.org/10.1007/s00339-017-0972-8
  51. An, X.Q., Yu, J.C. : Graphene-based photocatalytic composites. RSC Adv. 1, 1426-1434 (2011) https://doi.org/10.1039/c1ra00382h
  52. Zhang, H., Lv, X.J., Li, Y.M., Wang, Y., Li, J.H. : P25-graphene composite as a high performance photocatalyst. ACS Nano 4, 380-386 (2010) https://doi.org/10.1021/nn901221k
  53. Lee, J.S., You, K.H., Park, C.B. : Highly photoactive, low bandgap $TiO_2$ nanoparticles wrapped by graphene. Adv. Mater. 24, 1084-1088 (2012) https://doi.org/10.1002/adma.201104110

Cited by

  1. Core-shell g-C3N4@Zn0.5Cd0.5S heterojunction photocatalysts with high photocatalytic activity for the degradation of organic dyes vol.30, pp.5, 2018, https://doi.org/10.1007/s10854-019-00828-w
  2. Synthesis, physicochemical properties and antibacterial activity of hybrid nanocomposite of ZnS nanoparticles- decorated GO@CS vol.95, pp.9, 2018, https://doi.org/10.1088/1402-4896/abaad4