• Title/Summary/Keyword: Porous medium model

Search Result 103, Processing Time 0.025 seconds

THE TRANSPORT OF NUCLEAR CONTAMINATION IN FRACTURED POROUS MEDIA

  • Jim-Douglas, Jr.;Anna M.Spagnuolo
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.723-761
    • /
    • 2001
  • The objects of this paper are to formulated a model for the transport of a chain of radioactive waste products in a fractured porous medium, to devise an effective and efficient numerical method for approximating the solution of the model, and to demonstrated the convergence of the numerical method. The formulation begins from a model in an unfractured (single porosity) medium, passes through a double porosity model in a fractured medium, and ends with a modified single porosity model that takes the relevant time scales of the flow and the nuclear decay.

  • PDF

The Premixed Flame in a Radiatively Active Porous Medium (복사열전달을 동반하는 다공성 매질내의 예혼합 화염)

  • 김정수;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.265-270
    • /
    • 1989
  • The present study considers the thermal structure variation in a porous medium caused by changing the most important radiative property of porous medium, absorption coefficient, as well as altering the physical dimension of porous medium and the equivalence ratio of premixed gas mixture. The radiation model was introduced as an unsteady differential form using the two-flux gray radiation model. The role of the conductive heat transfer through both gas phase and porous medium was found to be almost insignificant compared with that of the radiative heat transfer. The reaction zone shifted upstream and the flame thickness decreased as either the geometrical length of porous medium increased or the absorption coefficient decreased.

A comparison study between the realistic random modeling and simplified porous medium for gamma-gamma well-logging

  • Fatemeh S. Rasouli
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1747-1753
    • /
    • 2024
  • The accurate determination of formation density and the physical properties of rocks is the most critical logging tasks which can be obtained using gamma-ray transport and detection tools. Though the simulation works published so far have considerably improved the knowledge of the parameters that govern the responses of the detectors in these tools, recent studies have found considerable differences between the results of using a conventional model of a homogeneous mixture of formation and fluid and an inhomogeneous fractured medium. It has increased concerns about the importance of the complexity of the model used for the medium in simulation works. In the present study, we have suggested two various models for the flow of the fluid in porous media and fractured rock to be used for logging purposes. For a typical gamma-gamma logging tool containing a 137Cs source and two NaI detectors, simulated by using the MCNPX code, a simplified porous (SP) model in which the formation is filled with elongated rectangular cubes loaded with either mineral material or oil was investigated. In this model, the oil directly reaches the top of the medium and the connection between the pores is not guaranteed. In the other model, the medium is a large 3-D matrix of 1 cm3 randomly filled cubes. The designed algorithm to fill the matrix sites is so that this realistic random (RR) model provides the continuum growth of oil flow in various disordered directions and, therefore, fulfills the concerns about modeling the rock textures consist of extremely complex pore structures. For an arbitrary set of oil concentrations and various formation materials, the response of the detectors in the logging tool has been considered as a criterion to assess the effect of modeling for the distribution of pores in the formation on simulation studies. The results show that defining a RR model for describing heterogeneities of a porous medium does not effectively improve the prediction of the responses of logging tools. Taking into account the computational cost of the particle transport in the complex geometries in the Monte Carlo method, the SP model can be satisfactory for gamma-gamma logging purposes.

Forced Convection in a Circular Pipe with a Partially Filled Porous Medium

  • Kim, Woo-Tae;Hong, Ki-Hyuek;Myung S. Jhon;John G. VanOsdo;Duane H. Smith
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1583-1596
    • /
    • 2003
  • A study of forced convection in a circular pipe with a partially filled porous medium was numerically investigated. The Brinkman-Forchheimer extension of the Darcy model was used to analyze the and temperature distribution in the porous medium. Our study includes two types of porous layer configurations: (1) a layer attached at the tube wall extending inward towards the centerline and (2) a layer at the centerline extending outward. The effect of several parameters, such as Darcy number, effective viscosity, effective thermal conductivity, and inertia parameter, as well as the effect of geometric parameters, were investigated.

Theoretical Formulation of Porous Medium Behavior Depending on Degree of Saturation (포화도에 따른 다공질 매체 거동의 이론적 정식화)

  • Park, Tae Hyo;Jung, So Chan;Kim, Won Cheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.81-88
    • /
    • 2001
  • The behavior of porous medium is modeled by linear thermoporoelastic behavior, linear poroviscoelastic behavior, poroplastic behavior, and poroviscoplastic behavior, etc. The behavior has, in general, a complicated aspect which makes a mechanical description of the problem with time. Constitutive modeling for deformation behavior of porous medium with coupling effects is needed since there is interaction between the constituents in pores with a relative velocity to each other. In this work, it is explained 3-dimensional behavior depending on degree of saturation for porous medium composed of homogeneous, isotropic materials. It is obtained the governing equations based on continuum porous mechanics. In addition, it is developed constitutive model which can be understood of behavior for porous medium which can be understood, analysed behavior of porous medium. It can be accomplished exact analysis and prediction of behavior in porous medium. The behavior for porous medium is analysed exactly, and the prediction of deformation behavior is accomplished. Consequently, it will be basis to analyze 3-dimensional behavior in municipal solid waste landfill, and the practical using of porous medium ground which are composed of nonhomogeneous, anisotropic materials can be done widely.

  • PDF

On Numerical Treatment of Pressure Gradient at the Interface Between a Homogeneous Fluid and a Porous Medium (순수유체와 다공성물질의 경계면에서 압력구배의 수치적 처리에 관하여)

  • Kim I. S.;Nam J. H.;Kim C.-J.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.28-34
    • /
    • 1999
  • The objective of this study is to present a numerical treatment of the pressure gradient when control volumes are sharing the interface between a homogeneous fluid and a porous medium. Two possible approaches, e.g. linear interpolation and extrapolation, are considered, and they are applied to the case of a steady and two-dimensional curved channel flow which is partially filled with a porous medium. It was found that the linear extrapolation produces a continuous velocity-field at the interface and thus is recommended. On the contrary, the linear interpolation entails a discontinuous velocity field at the interface, thereby warning its use in connection with the Brinkman-Forchheimer-extended Darcy flow model.

  • PDF

A numerical investigation on nonlinear behavior of fluid flow with variation of physical properties of a porous medium (다공성 매질의 물리적 특성 변화에 따른 유체흐름의 비선형 거동에 대한 수치적 분석)

  • Jeong, Woochang
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.5
    • /
    • pp.325-334
    • /
    • 2017
  • In this study, the numerical investigation of the non-linear behavior of the fluid flow with physical properties, such as porosity and intrinsic permeability of a porous medium, and kinematic viscosity of a fluid, are carried out. The applied numerical model is ANSYS CFX which is the three-dimensional fluid dynamics model and this model is verified through the application of existing physical and numerical results. As a result of the verification, the results of the pressure gradient-velocity relationship and the friction coefficient-Reynolds number relationship produced from this study show relatively good agreement with those from existing physical and numerical experiments. As a result of the simulation by changing the porosity and intrinsic permeability of a porous medium and the kinematic viscosity of a fluid, the kinematic viscosity has the biggest effect on the non-linear behavior of the fluid flow in the porous medium.

Heat Transfer Optimization in a Tube with Circular-Sectored Fins (원관내 부채꼴 휜 주위에서의 열전달 최적화)

  • Yoo, Jae-Wook;Kim, Sung-Jin;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.57-64
    • /
    • 2000
  • The present work investigates the heat transfer characteristics for laminar fully developed forced convection in an internally finned tube with axially uniform heat flux and peripherally uniform temperature through analytical models of convection in a porous medium. Using the Brinkman-extended Darcy flow model and the two equation model fur heat transfer, analytical solutions fur fluid flow and heat transfer are obtained and compared with the exact solution for fluid flow and the numerical solutions for conjugate heat transfer to validate the porous medium approach. Using the analytical solutions, parameters of engineering importance are identified and their effects on fluid flow and heat transfer are studied. Also, the expression fur total thermal resistance is derived from the analytical solutions and minimized in order to optimize the thermal performance of the internally finned tubes.

  • PDF

The Simulation about the Air Flow and Pressure Drop inside the Metal Foam (발포 금속 내 공기 유동 및 압력강하에 관한 시뮬레이션)

  • Kim, Pil-Hwan;Jin, Mei-Hua;Jang, Seok-Jun;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1053-1058
    • /
    • 2008
  • Porous medium was considered in the present study for the heat transfer enhancement. This was attributed to its high surface area to volume ratio as well as intensive flow mixing by tortuous flow passages. But when the air or water flow through in the porous medium, it is occurred the pressure drop between inlet and outlet. So in the present study investigated simulation result about the pressure drop in the porous medium before apply to heat exchanger. In this simulation, the thickness of the solid inside the porous medium region was varied 0.2 mm to 0.4 mm. And then the simulation result were compared the pressure drop in the same unit cell ($0.5\;mm{\times}0.5\;mm{\times}0.5\;mm$). To make the analysis model, it was assumed the 14-sided tetrakaidecahedron cell which has long been considered the optimal packing cell first proposed by the Lord Kelvin in 1887. And then the simulation is carried out using by STAR-CCM+ which is commercial software. The simulation result can be showed quantified pressure drop by solid effect in the porous medium.

  • PDF

NUMERICAL INVESTIGATION ON STATIC STIFFNESS CHARACTERISTICS OF POROUS AIR BEARING CONSIDERING ROUGHNESS EFFECTS (조도효과를 고려한 다공질 공기베어링의 정강성 특성에 관한 수치해석 연구)

  • Gwon, H.R.;Lee, S.H.;Lee, J.E.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.62-67
    • /
    • 2008
  • This study aims to investigate numerically the static stiffness characteristics of porous air bearing and to estimate appropriate permeability values of porous medium. In particular, a new roughness model is proposed and implemented into the commercial CFD code (FLUENT Ver. 6.2) by using C language based user subroutine. The predicted results are extensively compared with experimental data. The roughness model is also validated through comparison with the results from open literature. It is found that the predictions for static stiffness are in good agreement with experimental data. Therefore, the suggested model based on the roughness Reynolds number can be used in studying the stiffness characteristics of porous air bearing effectively. In addition, numerical simulations of various diameter size and conditions are conducted. According the results, it is expected that the static stiffness of porous air bearing has the non-linear characteristics.