• 제목/요약/키워드: Porous iron powder

검색결과 19건 처리시간 0.042초

Development of Porous Metal Materials and Applications

  • Fang, Y.;Wang, H.;Zhou, Y.;Kuang, C.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.599-600
    • /
    • 2006
  • This paper described the state of art of porous metal materials, the typical manufacturing technologies and performances of sintered metal porous materials, with emphasis on the recent research achievements of CISRI in development of porous metal materials. High performance porous metal materials, such as metallic membrane, sub-micron asymmetric composite porous metal, large dimensional and structure complicated porous metal aeration cones and tube, metallic catalytic filter elements, lotus-type porous materials, etc, have been developed. Their applications in energy industry, petrochemical industry, clean coal process and other industrial fields were introduced and discussed.

  • PDF

슬립 캐스팅을 이용한 통기성 세라믹형의 쾌속 제작 (Rapid Tooling of Porous Ceramic Mold Using Slip Casting)

  • 정성일;정두수;임용관;정해도;조규갑
    • 한국정밀공학회지
    • /
    • 제16권5호통권98호
    • /
    • pp.98-103
    • /
    • 1999
  • The application field of porous mold is more and more expended. A mixture of alumina and cast iron is used for making porous mold using slip and vacuum casting method in this study. Slip casting is a process that slurry is poured into silicon rubber mold, dried in vacuum oven, debinded and sintered in furnace, In this procedure, slurry is composed of powder, binder, dispersion agent, and water. Vacuum casting is a technique for removing air bubbles existed in the slurry under vacuum condition. Since ceramics has a tendency of over-shrinkage after sintering, cast iron is used to compensate dimensional change. The results shows that sintering temperature has a great effect on characteristics of alumina-cast iron composite sintered parts. Finally ceramic-metal composite sintered mold can be used for aluminum alloy casting of shoe mold using this process.

  • PDF

한중콘크리트 개선을 위한 철가루와 활성탄 혼입 경화체 기초연구 (Properties of Iron Powder and Activated Carbon mixed Matrix for the Improvement of Cold Weather Concrete)

  • 김원종;김원식;김규용;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.175-176
    • /
    • 2022
  • By studying the characteristics of matrix insulated through heat generated through oxidation of iron powder, the basic research results on the possibility of buffering and applicability of Cold weather concrete as a curing method are presented. In order to prevent freezing due to a sharp decrease in temperature in the initial stage of curing, iron powder (Fe), powder activated carbon, which is a small amount of porous carbonaceous adsorbent, and salt (NaCl) as an oxidizing agent are replaced with iron powder admixture. As the curing temperature increases, the strength tends to increase, and when replacing the admixture at the same curing temperature, the strength slightly decreases. This is determined as a result of generating iron oxide through an oxidation reaction of iron powder, activated carbon, and NaCl generating a large amount of pores in the matrix. In addition, the internal temperature tends to increase as the mixing substitution rate increases, and it is judged that the oxidation heat of the iron powder mixture affects the increase of the internal temperature during curing. The higher the replacement rate of the iron powder mixture, the slightly lower the strength, but it is determined that freezing and melting that may occur in the early stage of curing can be prevented due to an increase in the initial internal temperature.

  • PDF

다공성 철 분말을 이용한 열전지용 열원 적합성 연구 (Study on the Suitability of Heat Source for Thermoelectric Cells Using Porous Iron Powder)

  • 김지연;윤현기;임채남;조장현
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.377-385
    • /
    • 2022
  • Thermal batteries are specialized as primary reserve batteries that operate when the internal heat source is ignited and the produced heat (450~550℃) melts the initially insulating salt into highly conductive eutectic electrolyte. The heat source is composed of Fe powder and KClO4 with different mass ratios and is inserted in-between the cells (stacks) to allow homogeneous heat transfer and ensure complete melting of the electrolyte. An ideal heat source has following criteria to satisfy: sufficient mechanical durability for stacking, appropriate heat calories, ease of combustion by an igniter, stable combustion rate, and modest peak temperature. To satisfy the aforementioned requirements, Fe powder must have high surface area and porosity to increase the reaction rate. Herein, the hydrothermal and spray drying synthesis techniques for Fe powder samples are employed to investigate the physicochemical properties of Fe powder samples and their applicability as a heat source constituent. The direct comparison with the state-of-the-art Fe powder is made to confirm the validity of synthesized products. Finally, the actual batteries were made with the synthesized iron powder samples to examine their performances during the battery operation.

Iron Based PM Cellular Materials-Manufacturing, Properties and Applications

  • Stephani, Gunter;Gohler, Hartmut;Quadbeck, Peter;Studnitzky, Thomas
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.99-100
    • /
    • 2006
  • Cellular metals based on Iron have been intensively investigated during the last two decades. Because of the significant decreasing of the structural density of Iron based cellular structures, numerous technologies have been developed for their manufacturing. Besides the tremendous weight reduction a combination with other properties like energy and noise absorption, heat insulation and mechanical damping can be achieved. This contribution will give an overview about the latest state in Iron based cellular materials, including technologies in manufacturing, properties and potential applications.

  • PDF

다공질 금속의 소성 항복 거동

  • 김형섭;이동녕
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1992년도 춘계학술대회 논문집 92
    • /
    • pp.59-70
    • /
    • 1992
  • Appropriate yield criteria are necessary to perform computer simulation for densification processes of powder compacts and sintered metals. Various yield functions have been reviewed and a new form for yield criterion has been advanced. The yield criterion satisfies experimental results from combined tension and torsion tests of sintered porous iron specimens.

  • PDF

수열합성 공정을 이용한 금속 다공체의 나노 산화물 형성 (Formation of Nano-oxides on Porous Metallic Glass Compacts using Hydrothermal Synthesis)

  • 박혜진;김영석;홍성환;김정태;조재영;이원희;김기범
    • 한국분말재료학회지
    • /
    • 제22권4호
    • /
    • pp.229-233
    • /
    • 2015
  • Porous metallic glass compact (PMGC) are developed by electro-discharge sintering (EDS) process of gas atomized $Zr_{41.2}Ti_{13.8}Cu_{12.5}Ni_{10}Be_{22.5}$ metallic glass powder under of 0.2 kJ generated by a $450{\mu}F$ capacitor being charged to 0.94 kV. Functional iron-oxides are formed and growth on the surface of PMGCs via hydrothermal synthesis. It is carried out at $150^{\circ}C$ for 48hr with distilled water of 100 mL containing Fe ions of 0.18 g/L. Consequently, two types of iron oxides with different morphology which are disc-shaped $Fe_2O_3$ and needle-shaped $Fe_3O_4$ are successfully formed on the surface of the PMGCs. This finding suggests that PMGC witih hydrothermal technique can be attractive for the practical technology as a new area of structural and functional materials. And they provide a promising road map for using the metallic glasses as a potential functional application.

선탄경석(選炭硬石)과 광산화물(鑛酸化物)로 제조(製造)한 담체(擔體)의 중금속(重金屬) 불용화(不溶化) 특성연구(特性硏究) (A study of Immobilizing Heavy metals by pellets manufactured from Coal tailings and Iron oxide)

  • 이계승;송영준
    • 자원리싸이클링
    • /
    • 제21권1호
    • /
    • pp.75-81
    • /
    • 2012
  • 선탄경석을 환경개선물질로 순환자원화하기 위해 철산화물과 혼합하여 중금속 불용화제를 제조하고 이의 적정제조 조건과 중금속에 대한 불용화 성능을 평가하였다 선탄경석을 분쇄한 후 철산화물의 분말을 혼합하여 구형의 펠릿을 제조하고 이를 가열하여 중금속 불용화제를 제조하였다. 온도별로 가열한 결과, $1100^{\circ}C$부터 선탄경석에 함유된 탄질분에 의해 영가철이 생성되었다. 제조된 불용화제는 구형의 다공체로서 공극률은 34.63%, 겉보기 밀도는 1.31 g/mL, 공극의 평균크기는 9.82 ${\mu}m$로 측정되었다. 불용화제를 비소(V), 구리(II), 크롬(VI), 카드뮴(II)이 함유된 각각의 중금속 용액과 반응시킨 결과, 영가철이 생성된 $1100^{\circ}C$에서 제조된 펠릿이 중금속 불용화도가 높고 pH를 더 높이는 것으로 나타났다. 중금속농도 10 ppm의 용액을 99.9%이상 불용화하기까지 비소의 경우 1시간, 크롬의 경우 2시간, 구리의 경우 4시간이 필요하였다. 그러나 카드뮴의 경우 불용화도가 낮게 나타났고 중금속농도가 높을수록 불용화도가 더 낮아지는 것으로 나타났다.

금속 분말을 이용한 합금폼 제조 및 특성 (Fabrication and Properties of Alloy Foam Materials using Metal Powders)

  • 최내현;김구환
    • 한국분말재료학회지
    • /
    • 제17권6호
    • /
    • pp.489-493
    • /
    • 2010
  • Nickel-based and iron-based alloys have been developed and commercialized for a wide range of high performance applications at severely corrosive and high temperature environment. This alloy foam has an outstanding performance which is predestinated for diesel particulate filters, heat exchangers, and catalyst support, noise absorbers, battery, fuel cell, and flame distributers in burners in chemical and automotive industry. Production of alloy foam starts from high-tech coating technology and heat treatment of transient liquid-phase sintering in the high temperature. These technology allow for preparation of a wide variety of foam compositions such as Ni, Cr, Al, Fe on various pore size of pure nickel foam or iron foam in order for tailoring material properties to a specific application.

The Sintering Behaviour of Fe-Mn-C Powder System, Correlation between Thermodynamics and Sintering Process, Mn Distribution, Microstructure

  • Hryha, Eduard;Dudrova, Eva
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.839-840
    • /
    • 2006
  • Sintering behavior of the Fe-0.8Mn-0.5C powder system was studied on the specimens with a density of ${\sim}7.0g/cc$ sintered at $1120^{\circ}C$ for 30 min in a gas mixture of $7%H_2/93%N_2$ with the inlet dew point of $-60^{\circ}C$. During the atmosphere monitoring ($CO/CO_2$-content and dew point) was showed, that carbothermical reduction occurs in two different temperature ranges; three peaks of dew point profile also can be distinguished during sintering cycle as well. Following sintering the Mn-content distribution and microstructures around the Mn-source were micro-analytical evaluated; the results showed that manganese travels through porous iron matrix up to ${\sim}60{\mu}m$.

  • PDF